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The dynamics of the spreading of liquids on a solid
surface. Part 1. Viscous flow

By R. G. COX

Department of Civil Engineering and Applied Mechanics, McGill University,
Montreal, PQ, Canada

(Received 25 August 1983 and in revised form 2 December 1985)

An investigation is made into the dynamics involved in the movement of the contact
line when one liquid displaces an immiscible second liquid where both are in contact
with a smooth solid surface. In order to remove the stress singularity at the contact
line, it has been postulated that slip between the liquid and the solid or some other
mechanism must occur very close to the contact line. The general procedure for
solution is described for a general model for such slip and also for a general geometry
of the system. Using matched asymptotic expansions, it is shown that for small
capillary number and for small values of the length over which slip occurs, there are
either 2 or 3 regions of expansion necessary depending on the limiting process being
considered. For the very important situation where 3 regions occur, solutions are
obtained from which it is observed that in general there is a maximum value of the
capillary number for which the solutions exist. The results obtained are compared
with existing theories and experiments.

1. Introduction

Consider two immiscible liquids (liquid A and liquid B) or a liquid and a gas in
contact with a solid surface (or solid surfaces) and suppose that liquid A displaces
liquid B so that the contact line [where the liquid-liquid interface intersects the solid
surface] is constrained to move across the solid surface with a velocity U. Then the
observed contact angle (that the liquid-liquid interface makes with the solid surface),
which we will measure through liquid A, is known to increase as U increases [Dussan
V. 1979]. We will consider here the dynamics of this contact-line movement and will,
for simplicity, assume that the solid surface (or surfaces) involved are perfectly
smooth and chemically homogeneous. However it must be admitted that while
roughness and chemical heterogeneity of the solid are suspected to be at least partly
responsible for the jump in value of the contact angle (i.e.contact-angle hysteresis)
occurring in the static limit of U = 0 (Johnson & Dettre 1964; Huh & Mason 1977a;
Cox 1983), it is not known what effect these might have for a non-zero spreading
velocity U. We will consider a completely general geometry for the system under
discussion since we are primarily interested here in what happens very close to the
contact line and we expect that this, to some extent, will not depend on the overall
geometry. Thus we might have for example (a) the spreading of a drop on a horizontal
surface (Greenspan 1978; Hocking & Rivers 1982), (b) the movement of a drop down
an inclined surface, (¢) the movement of a meniscus along a tube of circular or
non-circular cross-section, (d) the movement of some object (e.g. plate, cylinder,
sphere) through a liquid-liquid interface or (e) the squeezing of a drop between two
parallel plates.
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When the flow field is calculated in the neighbourhood of a moving contact line
it is found that there is a non-integrable singularity in the stress at the contact line
resulting in a divergent integral for the drag force on the solid boundary. In order
to avoid this problem slip has been postulated to occur between the liquids and the
solid surface close to the contact line (Hocking 1977; Huh & Mason 1977b). The
following models for this slip have been used:

(i) Zero tangential stress at the solid surface at distances from the contact line less
than s and no slip for distances greater than s (Huh & Mason 19775). This slip
length may possibly be different in the two liquids being s in liquid A and as in
liquid B (where a is assumed to be of order unity).

(ii) Difference in tangential velocity between liquid and solid equal to s times the
shear velocity gradient at the solid surface (Hocking 1977; Huh & Mason 1977b;
Lowndes 1980).

A more general model might be

(iii) Difference in tangential velocity between liquid and solid equal to s?-times the
shear velocity gradient at the solid surface to the power of p (where p > 0).

In all these models s is a measure of the distance from the contact line over which
slip occurs. It should be mentioned that slip between liquid and solid is a convenient
assumption to get rid of the non-integrable stress singularity, but that there are also
other possibilities such as non-continuum effects, non-Newtonian fluid effects and the
elasticity of the solid, which might also have the effect of removing the singularity.

For a specific slip model and specific overall geometry, this problem has been
examined for small capillary number and small ratio of slip length s to macroscopic
lengthscale. This has been done using singular perturbation methods using two
regions of expansion (Hocking 1977; Huh & Mason 1977b) and using three regions
of expansion (Hocking & Rivers 1982). After a discussion of the outer region (§3) in
which the overall geometry is important and the inner region (§4) applicable close
to the contact line (at distances of order s), a discussion is given (§5) of the conditions
necessary for a two-region expansion or a three-region expansion to be valid. It is
shown that whereas for the two-region expansion, the observed contact angle must
be approximately the static value, this is not the case for the three-region expansion,
and so we examine here in detail the more interesting situation of the three-region
expansion. Thus, in addition to the outer and inner regions mentioned above, we have
an intermediate region lying between them as described by Hocking & Rivers (1982).
Since in this intermediate region we are considering lengthscales small compared with
the macroscopic dimension of the overall system but large compared with the slip
length s, we can at lowest order, solve without consideration of the overall geometry
or the slip model used. This is done in §6. Then upon matching the intermediate region
solution onto the inner and outer region expansions the general solution is obtained
in §7. Since it is found that the major contribution to the effect on the contact angle
comes from the intermediate region, we find that at lowest order in the capillary
number the solution obtained is independent of the solution in the inner and outer
regions. Furthermore, even at the next higher order in the capillary number, the
solution is dependent only upon one constant obtained from the inner region solution
(which is thus dependent on the slip model used) and one constant obtained from
the outer region solution (which is thus dependent on the overall geometry of the
system). Finally in §8, a general discussion of the results is given including conditions
of validity and a comparison with existing theories and experiments. Details are also
given concerning the flow field in the intermediate region.
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2. General problem

Let R be some characteristic macroscopic length and U some characteristic velocity
for the flow occurring when liquid A (of viscosity x#, and density p,) displaces liquid
B (of viscosity ug and density pg). During this motion, slip between each liquid and
the solid surface (or some other mechanism to get rid of the non-integrable stress
singularity) must occur at distances of order s from the contact line. Since we expect
8 to be very small, possibly of molecular size, it is reasonable to assume that

il
R

In addition it will be assumed that the tension o of the interface between the two
liquids is sufficiently large that interfacial tension effects dominate over viscous
effects, or more precisely that the capillary numbers for the two liquids are small,
ie.

€

<1, (2.1)

ca=aU ¢y (2.24a)
o
ACa = ’% <1 (2.2b)

where A = ug/p, is the viscosity ratio of the liquids. In making a double expansion
in terms of the two parameters ¢ and Ca [or ¢ and ACa if A » 1], it will be shown later
that either 2 or 3 regions of expansion are necessary depending on the manner in which
one approaches the limit ¢—~0, Ca—0.

The Reynolds numbers (p, RU/u,) and (pg RU/pug) for the flow in the two liquids
are assumed to be so small that inertia effects may be neglected. In addition it will
be assumed that at all points on the contact line the solid surface is planar on a
lengthscale much smaller than R. However the solid surface (or surfaces) present are
permitted to be non-planar on a lengthseale of order R since this can be taken into
account in the outer region.

3. Outer region

An outer region of expansion is defined using variables made dimensionless by the
quantities B, U and p,, so that it is valid everywhere except close to the contact line.
Thus if u, and p, are the dimensionless velocity and pressure in liquid A and ug
and pp the dimensionless velocity and pressure in liquid B in this outer expansion,
and if 7 is the dimensionless position vector, then in the absence of gravity effects
[i.e. if the Bond number B = |p, — pglgR?/0 is very small],

Viu,—Vp, =0 V-u, =0, (3.1)
in liquid A and AViug—Vpy =0 Veug =0, (3.2)

in liquid B. Should the Bond number B be of order unity so that gravity may no
longer be neglected, then (3.1) and (3.2) are still valid so long as p, and pg are
interpreted as the excess pressure over hydrostatic. For the slip model (i) referred
to in §1, both u, and ug in this outer expansion must satisfy the no-slip boundary
condition on all solid walls, since slip only occurs at a distance of O(¢) from the contact
line and the flow at such positions will be found by defining an inner region of
expansion valid there. However for the slip models (ii) and (iii) referred to in §1, u,
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and ug would satisfy the no-slip boundary condition only at order ¢° as e —0. On the
interface between the two liquids, the following boundary conditions will apply: (i)
The kinematic boundary condition relating the normal velocity at the interface in
both liquids to the interface motion; (ii) the continuity of tangential velocity; (iii)
the continuity of tangential stress, and (iv) the balance of the normal fluid stress on
the interface by the interfacial tension times the mean curvature of the interface.

For a unique solution additional boundary conditions are usually necessary. Such
boundary conditions may, for example, involve the statement of a given volume of
one of the liquids (as for a drop spreading on a solid surface), of a given pressure drop
across the interface (as for a meniscus moving along a tube under a given pressure
drop) or of a given flow rate (as for a meniscus moving along a tube at a given
velocity). Since the normal-stress difference can be non-zero (and of order o/ R) even
in the static situation, its dimensionless value is of the form

(normal stress difference due to the flow)+Ca AP, (3.3)

where AP is of the order unity and is the static pressure drop across the interface
(in going from liquid A to liquid B) made dimensionless by o and R. Thus AP is a
constant if the Bond number is small so that gravity effects are absent, but is of the
form (@— Bz) if the Bond number B is of order unity (a is a constant and z the vertical
coordinate). Thus the normal-stress boundary condition in outer variables is

Ca [normal-stress difference across interface]+ AP
= [mean curvature of inter face], (3.4)

and this is the only place where the capillary number Ca appears in the equations
and boundary conditions. Thus the liquid velocity 4, (and ug) can be expanded in
the form

uA=uA0+CauAl+-.., (3.5)
whilst the liquid—liquid interface f(r) = 0 in these outer variables can be expanded
as f=fi+Caf+...=0, (3.6)

where u,,, u,,, f,, f; etc. will in general be functions of ¢ since (i) ¢ may become
involved through the required matching at the contact line (discussed in §5) and (ii)
the slip boundary condition at the walls may involve e¢. Thus these quantities may
be expanded in terms of e. By substituting the expansions (3.5) and (3.6) into (3.1)
and (3.2) and the boundary conditions, it is seen that f, = 0 is just the static position
of the interface determined by the normal-stress boundary condition at lowest order,
namely, AP = [mean curvature of interface]. (3.7)
Thus f, is independent of e whilst it is seen that u,, expanded in terms of ¢ must be
of the form Upo(r,€) = Uygo(r)+o(l) ase—>0, (3.8)

where u,,, is independent of €. The precise order of the o(1) terms in (3.8) depends
on the slip model used. At present f, = 0 is just any static interface configuration
about which we are expanding. The determination of such a static configuration
would require specification of the contact line position and also a subsidiary boundary
condition of the type mentioned previously (e.g. given drop volume for a drop
spreading on a solid surface). We assume that the contact-line position is known
although in most problems it would not be known a prior:.

The zeroth-order velocity fields u,g,, g, can then be found by solving (3.1)
and (3.2) and all the boundary conditions (other than the normal-stress condition)
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Ficure 1. (a) Outer region: coordinates are (r, ¢) and interface slope is 6. (b) Intermediate region:
coordinates are (£ @) where £ = Ca Inr and interface ¢ = §(£) has slope 6 = (Z). (¢) Inner region:
coordinates are (f, ¢) where £ = ¢71r.

with the interface given by the known static position f, = 0. Then from these values
of u 44, Bpee the normal-stress difference across the interface due to this flow can be
calculated and hence, by the normal-stress condition at order Ca*!, the value of the
interface shape correction f; found. In order that for a given f,, the value of f, be
unique, we assume that the surfaces f, = 0 and f,+ Caf; = 0 have the same contact
line position and the same subsidiary boundary condition (e.g. given drop volume
or given pressure difference across the interface).

For systems with simple geometry, it may sometimes be possible to obtain explicit
values for f, 40, Upge and f; as was done by Hocking & Rivers (1982) for the case
of a drop spreading on a plane surface. However for more complicated situations it
is very difficult to calculate even the static interface shape given by f,. Thus here,
since we are more interested in behaviour close to the contact line, we will calculate
the asymptotic form of the interface shape (3.5) as the contact line is approached since
it is this which is needed for the matching procedure close to the contact line. Thus
if O is the point which we wish to consider on the line of intersection of f, = 0 with
the solid surface (i.e. on the zeroth-order contact line position), we set up a cylindrical
polar coordinate system (r, ¢, z) in outer variables with origin at O and moving with
the contact line (see figure 1a) and z-axis lying tangent to the contact line with ¢ = 0
in the solid surface in the direction opposite to that of contact line motion (for U > 0).
For the purpose of investigating the flow in the neighbourhood of O, we can choose
the characteristic speed U as the speed of the contact line at O, so that in our local
(r,9,2) variables, the wall moves in the direction ¢ = 0 with unit velocity.

Consider first the static position f, = 0 of the interface determined by (3.6). In the
(r,@)-plane, if the angle at which this static interface meets the solid surface is 6,
for r—0, then

0 = 0,+0(r), (3.9)

where 6 is the angle the tangent plane to the interface makes with the solid surface
at a general position (see figure 1a). When r is sufficiently small, ‘this interface may
be taken as the plane ¢ = 6,,. The asymptotic form of the velocity field as r—0 can
be obtained by defining stream functions ¢, and g for liquids A and B such that
(#a00)r 80d (%409)4, the radial and transverse components of u,,, are

|
(%a00) = Parye (Uago)y = o’ (3.10)
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with similar expressions for the components of ug,,. If these values are substituted
into (3.1) and (3.2), we obtain, upon the elimination of the pressure

Vig,=0 and Vi, =0. (3.11)
The no-slip boundary condition on the solid wall gives

Ya=0 %%=+won¢=a (3.12)

Yyg=0 aéb—;=—r0n¢=n, (3.13)

while the boundary conditions for u,,, and ug,, at the interface ¢ = 0., with zero
normal velocity (to be justified later) reduce to:

Wa _ g _
Wa_ s
0 0p (3.15)
10, O 10, _ (13 Yy LYy
(r2 dp?  Or? o )_/\(r“’ 0g2  or? o ) (3.16)

The solution of (3.11) of the form required in order to satisfy the boundary conditions
(3.12) and (3.13) is

Ya=r{(Cop+D,)cosg+ (B, d+F,)sing},
wB = T{(OB¢+DB) COS¢+ (EB¢+FB) Sin¢}, (317)

where C,, D,, E,, etc. are constants which can be determined using the boundary
conditions (3.12) to (3.16) as

Cy = sinbp [—A{m sin 6, +sin®0,, cos O, +6,,(n—6,,) cos6,,}
+cos 0, {+sin2 6, — (t—0,,)%}]/A,
D, =0,
Ey = sin® 0, [—Alsin® 60, +0,,(n—0,,)} +{+sin2 0, — (n—6,,)%} ] /A,
Fy = O [+Alsin? 01, + 0,y (n—6p,) + 7 sin G, cos O} +{—sin28,, + (1—6,,)3]/A,
—Dg/n=Cg =sinb, [+ A cos@,, (62, —sin2d,))
+H{—msiny, +5sin?6,, cos by, +0,,(R—0,,) cosG,,}1]/A,
Ep = sin® 0, [+ A(6%, —sin?6,,) +{ +sin? 0, + 0, (n— 0, )}]/ A,
Fg = [M(— 6%+ sin?0,,)(0,, — T cos? O)+{—m(r—6,,)sinf,, cosb,,
—Om sin 0 + 71 sin® O, cos? O, + (T —6,) Oy, 0820, — (M~ B,,) 621/ A,
(3.18)
where
A = MO, —sin?0,) {(n—0,,) +sin 6, cosf,}
+{(m—0,,)*—sin6,,} (6,,—sin6,, cosh,,). (3.19)

The normal stress on the interface ¢ = 6, directed in the positive ¢-direction due
to this flow is found to be

=2r7'[(ACg—Cy) cos b+ (AR~ E,) sinf, ] = — 1 (0, A), (3.20)
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where the function f(6, A) is obtained as

£6,2) = 2 sin O[A%(0% —sin? 0) + 2A{0(n — §) + sin? 0} + {(t — )% —sin? }]
T A(62—sin? 6) {(r —6) +sin 0 cos G} + {(r — )2 —sin% 6} (# —sin O cos B)°

In addition to the term (3.20), the normal stress on the liquid-liquid interface may
also be expected to contain terms which are non-singular as r—>0 arising from the
flow in the corner induced by the overall flow in the outer region away from the
contact line (and also to the fact that the interface is only planar in the limit r > 0).
It should be noted that in situations where the interface configuration changes in time
with a characteristic timescale 7', that since df,,/d¢ would be of order 7, the
dimensional normal stress on the interface near the contact line due to this
unsteadiness would be of order xT ! compared with the order xU/(Rr) due to contact
line movement considered here (r is dimensionless outer variable). Thus the effect of
unsteadiness is negligible so long as

(3.21)

T> %, (3.22)
and this will be the case for all r (including r—0) so long as
T is of order L or larger (3.23)

U

The curvature of the liquid-liquid interface can be taken into account by expanding,
for small », the boundary conditions on that interface. One would then obtain
additional terms of order #*! in (3.14), r*? in (3.15) and r° in the (3.16) giving rise
to a term of order 7° (or possibly of order Inr) in the expression (3.20) for the normal
stress.

Since the static interface shape is given by (3.9), the interface configuration for
r—0, correct to order Ca*! can be written as

0={0,+0(r)}+Cab,+..., (3.24)
where from the coefficient of Ca*! in the normal-stress boundary condition (3.4) we
aa—erl =170, A)+o(r ™). (3.25)

From earlier remarks it is seen that the o(r™!) term in this equation is really of order
® (or possibly of order Inr). Thus integrating (3.25) and substituting the resulting
value of 6 into (3.24) we obtain the asymptotic form of the liquid-liquid interface

for r—>0 as 0= {0+ ...} +Ca{f(Bm, ) Inr+QE+.. )+ ..., (3.26)

where QF depends on A, 6, d6,,/d¢t, and on the entire geometry involved in the outer
region. In the above calculation we have expanded the liquid-liquid interface shape
about a static position for which, at the point on the contact line being considered,
this static interface configuration intersects the solid surface at an angle 6,,,. However
in the procedure of matching onto a solution valid close to the contact line it will
be found (see §5) that the value of this as yet unknown constant 6, is a function
of Ca and may thus be expanded as

Op =O0me+Calby,+. ... (3.27)
Then (3.26) takes the form
0= {0pot - }+Ca{f(0ro) Inr+QF+0,+ ... 3+ ... (3.28)
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4. Inner region

Close to the contact line, an inner region of expansion is defined using variables
made dimensionless by the quantities 8, U and . We thus use polar coordinates (£, ¢)
[with origin at O moving with the contact line], as independent variables so thatt

f~elr agf—>o0. (4.1)

The velocity fields u, and ug are used (these being identical to those used in the outer
region) and are expanded for small Ca as

u, = y(f, ¢;6)+Cally (A, d56)+ ..., |
ug = lg, (!, ¢;€)+Catig (f,d;e)+ .. .,J
where u, o, g, ete. will in general depend on €. The liquid-liquid interface shape [figure
1¢] can be written as 8 = 6(f) where 6 is defined as in the outer region as being the

angle between the interface and the solid surface at a general position. Thus we
expand for small Ca as

4.2)

0 =0,(f;€)+Cal,(F;e)+.... (4.3)

The normal-stress boundary condition at the liquid-liquid interface which, in
dimensional formis uU/s (normal-stressdifferenceininner variables) + (o /R)AP = o /s
(mean curvature of interface in inner variables), can be written in terms of inner
variables as

Ca[normal stress difference]+ ¢AP = [mean curvature of interface]. (4.4)

Thus at order Ca®, the interface 6 = 6,(#) has a curvature of order ¢*! in inner
variables so that the expansion for §, in terms of ¢ is

6, ~ 0, +O0(ef) as e—~>0. (4.5)

Hence the interface is approximately planar and makes an angle 6, with the solid
surface. This angle 6, will be called the microscopic contact angle, its value being
determined by the forces acting very near the contact line between the molecules of
the two liquid phases and of the solid phase. It is, as already mentioned in the
introduction, being assumed that no contact angle hysteresis occurs so that 6, is the
unique static contact angle for the system. It is uncertain whether such an angle 6,
would depend on the spreading velocity U. However, it is to be expected that for
the situation not considered here where surfactants are present, 6, will depend on
U since the flow will affect the subfractant concentration at the contact line and hence
the value of 8. Also some authors [Cherry & Holmes 1969; Blake & Haynes 1969]
have suggested that the flow might affect 6, even for pure systems.

If the lowest-order flow fields &,, and @, are expanded for small ¢, it is seen that
they must be of the form

8 = Broo(F, ) +0(1), 4.6)
Gy, = lggo(f, ¢)+o(1) as e—»O.j
where @i , o and fig,, have stream functions i, and i 5 respectively [since flow is planar

at order ¢°]. Then
Vi =0, Vi =0, (4.7)

+ £+ e~ 1r since origin used here is at the actual contact line whereas in §3 it was taken at the
intersection of f, = 0 with the solid surface.
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while on the liquid-liquid interface ¢ = 6, they satisfy boundary conditions similar
to (3.14), (3.15) and (3.16) [with i, and {5 replacing ¥, and g respectively]. Should
the interface configuration be time-dependent, then the condition (3.22) for the
neglect of this unsteadiness takes the form
Re

T> T
which is automatically satisfied if (3.23) is satisfied. The boundary conditions on the
solid wall [¢ = 0 and ¢ = 7] are zero normal velocity, i.e.

Yyo=0 ong=0, (4.8)
Yg=0 ong=m, (4.9)

and the given slip law, which for the model (i) mentioned in §1 (with the same slip
length s in the two liquids) would give

PPa o s A o _
B3 =0 iff<1 W_-H, iff>1on¢ =0, (4.10)
e _ g ifrcy WB__a ia _
og? =0 iff<1 6 f iff>1ong¢g=m. (4.11)

Since the flow fields 4,, and @, and hence also the interface shape correction 6,(7)
at order Ca*!, depend on the particular model chosen for the slip law, we will not
calculate these quantities. Instead we will derive only the asymptotic form of the
solution for #— 0. since it is this which is required for the matching procedure.

For large #, the slip boundary condition applicable on the solid surface must
approach the no-slip boundary condition (whatever the chosen slip model may be).
Then, by solving in a manner similar to that discussed in §3 using such a no-slip
boundary condition, we obtain the normal stress on the interface ¢ = 6, directed in
the positive ¢-direction due to this flow as —#~1f(6,,, A) so that the correction 6, (#)
to the interface shape satisfies

%%1 ~ F1f(6,,A) asf-> o0, (4.12)
giving 6, ~ f(0,, ) In?+QF+... asf->o0, (4.13)

where the integration constant @ is determined by a knowledge of the entire flow
field in the inner region. Terms which tend to 0 slower than #7! as #—> oo cannot appear
in (4.12) since they would give rise to terms which would tend to co faster than In#
in (4.13). Such terms cannot appear since they would match onto terms in the
coefficient of Ce in (3.28) which would tend to oo as ¢ >0. Even for the three-region
expansion situation discussed in §5 it is seen that such terms cannot appear since
they would match onto terms in the intermediate region which would tend to co as
€—>0. Indeed the inner solutions obtained by Huh & Mason (19775b), Hocking (1977)
and Hocking & Rivers (1982) all have the asymptotic form (4.13). Therefore from
(4.3) and (4.5) it is seen that the asymptotic form of the interface shape for #—> o0

is 0=(0,+..}+Calf(0,, ) InF+QF+ .. }+..., (4.14)

where @;f depends on A, §, and the particular slip law which is chosen.



178 R.G. Cox

5. Matching with two and three regions

When the parameter e is kept fixed and small while Ca >0, the expansion (3.26)
in Ca valid in the outer region can be matched directly onto the expansion (4.14) in
Ca valid in the inner region. This was done by Dussan V. (1976), Huh & Mason (1977b)
and Hocking (1977) for particular cases. Thus writing (4.14) in outer variables, we
obtain

0= (0y+...}+Ca{f(0,,A) Inr+f(0,,A) In(e™)+QF+...}+ ..., (5.1)
which must be the form of the outer region expansion for r >0. Comparing this with
(3.28), we obtain .

mo = 0w, O+ Q5 =f(0,,A)In(e")+Qf, (5.2)
so that by (3.27), the value of 6, is
O = by + Ca{f(0,, ) In (67} +Q{(0,) — @5 (6,)} (5.3)

where, since 6, ~ 0,,QF may be evaluated at § =6, (instead of 6 = 6,,,). This
relation (5.3) relates the unknown constant 6, determining the outer region solution,
to the spreading velocity U (involved in the definition of Ca) and to the microscopic
contact angle 6. This angle 6., which will be called the macroscopic contact angle,
is the angle between the static interface shape f, = 0 as defined in §3 [see paragraphs
following (3.8)] and the solid surface in the outer region. Or alternatively, 6, may
be considered as being determined by the asymptotic form (3.26) of the interface shape
in the outer region as one approaches the contact line.

The result (5.3) can only be expected to be valid in the general double limit of Ca -0
and e— 0 if the quantity (Ca In (¢~?)) also tends to zero in this limiting process since
otherwise the term Ca f(6,,, A) In (¢e!) appearing in (5.1) would be of order unity (or
larger). This would mean that this equation (5.1), which is the inner solution written
in outer variables, should be written as

={0,+f0,,A)(Caln(e"V))+ ...} +Cal{f(f,, ) Inr+QF+...}+... (54)

for matching onto the outer solution. However this would not be a correct pro-
cedure since in the inner region the interface is approximately planar with 8 = 6,
and cannot therefore be valid at distances from the contact line for which
0 ~0,+f(0,,A)Caln(e7?)) as in (5.4). Thus for Ca—0 and €0 with (Ca In (™))
of order unity, there is no overlap of the inner and outer regions. Then a third region,
called the intermediate region of expansion must exist between the inner and outer
regions of expansion in order to connect them. It is for this reason that Hocking &
Rivers (1982) needed three regions of expansion in considering this type of limit for
the special case of a drop spreading on a planar solid surface. In the subsequent
discussion we limit ourselves to this situation where Ca -0 and ¢ >0 with (Ca In (¢71))
of order unity so that the three regions of expansion are necessary. In order to perform
this expansion process we write

7= Caln(e™?), (5.5)

and make expansions in Ca taking 5 as a parameter of order unity in magnitude. Then,
smnee e =exp(—yCa™), (5.6)
it follows that € is exponentially small. Since only terms of order €’ were in any case.
included in the expansions in the outer (§3) and inner (§4) regions the results, which
were obtained correct to O(Ca*?'), are still valid without change in this three-region
expansion procedure,
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6. Intermediate region

In the intermediate region, where we are concerned with values of r which are much
larger than € (so that we are outside the inner region) but much smaller than unity
(so that we are inside the outer region), we use independent coordinates (&, ¢) where
% is defined byt Z = Ca In €, (6.1)
where as in §4 the origin of the polar coordinates (7, ¢) is at the actual contact line
and where —7<&<0. (6.2)

This region corresponds to that investigated by Pisman & Nir (1982). Since for r small
and of order unity, r ~ ¢ giving
r = exp (Ca™1%), (6.3)

it follows for any fixed value of Z in the range (6.2), that r becomes exponentially
small as Ca—0. Thus for these values of & one is inside the outer region. However
the end point # = 0 corresponds to the outer region (with r of order unity) so that
the intermediate region must be matched onto the outer region at & = 0. Similarly,

since # = exp{Ca ' (Z+7)}, (6.4)

it is seen that 7 becomes exponentially large as Ca— 0 for & satisfying (6.2). Thus for
such values of Z, one is outside the inner region. However the end-point & = —9
corresponds to 7 of order unity so that the intermediate region must be matched onto
the inner region at & = —7, this being a negative value of £ with magnitude of order
unity.

Since, for a fixed value of # in this region, the value of r and hence the value of
the curvature of the contact line (of order unity in the outer region) is exponentially
small for Ca—0, the flow field is, to within such an exponentially small term,
two-dimensional so that it may be expressed in terms of a stream function ¥. The
velocity field u will be considered as a function of £, ¢ and an expansion made in Ca
with 7 taken as a parameter of order unity so that in liquid A

uy(& ¢;9,Ca) = uyo(, ¢3 )+ Caupgy(Z,45m+ .., (6.5)
whilst in a similar manner the liquid-liquid interface shape may be expanded as
¢ = B(#; 9,Ca) = By(&; )+ Cafy(z;n)+.... (6.6)

The stream function ¥ and pressure field p corresponding to the flow field (6.5) are
then of the form

VA @;9,Ca) = r§\(T,0;9,Ca) = r[§so(&, ¢; 1)+ Cafa, (@, S:9)+ ... ], (6.7)
PAlE B9, Ca) = 171 E, (%, ¢37,Ca) = r i {hyg(& ¢ )+ Cahyy (& 59+ ...]. (6.8)

We will use throughout subsecripts A and B to refer to quantities pertaining to liquids
A and B respectively. Where no suffix is given, the quantity is taken to pertain to
either liquid A or liquid B in the equation concerned. The angle # that the tangent
to the liquid-liquid interface given by (6.6) makes with the solid surface [figure 15]

) 0 = ptant(32) = o tan-s(ca ). 9)

t This is different (although equivalent) to the independent variable used by Hocking & Rivers
(1982).
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From the form (6.7) of the stream function, the radial component u, and transverse
component u, of the velocity field have values in either liquid of the form

o

U = FrE

uy =—g—Cazs (6.10)

%
¢
Since the stream function yr must satisfy the biharmonic equation, it is found, by
direct substitution of the form (6.7) for i, that §(Z, ¢) must satisfy

a2 2 . a2 a2 a4
(W+1) = 20a2@(1 a¢2)g Ca‘a (6.11)

If the expressions (6.8) and (6.10) are substituted into the creeping flow equations

(3.1) (or (3.2)) in polar coordinates and the resulting relations put in terms of the
intermediate region coordinates, we obtain

—(-%_ a“) ( o & ) 2< o5 _ aﬁg)
ﬁ‘( ¢ 0¢° +Ca 3E0p 0Z04° +Ca 4% o +.... (6.12)

At the solid-liquid surfaces ¢ = 0 and ¢ = m, the boundary condition on u,, at
lowest order, is u, = 0, there being zero error for slip model (i) (see §1) and an error
of order €Pr~? for slip model (iii) (with p = 1 for slip model (ii)) since from the form
of the flow field, the velocity gradient is proportional to r~* for » » ¢. However from
(6.1) and (5.6) 6212 = exp{—pCa~}(F+7)},
which is exponentially small for Ca—0 since £ > —# and p > 0. Thus neglecting
such terms, the boundary conditions u, = 0 and %, = 0 on the solid surface become

0Fa 9Ga _ —
gat+Ca 0 =0 2 =+1 on¢=0 (6.13)
- s _ o %m_ -
gg+Ca % = o6 =—1 ong¢=m. (6.14)

The above normal-velocity condition at the solid surface for liquid A may be

integrated to give G = 4 exp (—Ca'3)

where A4 is a constant. This corresponds, as expected, to iy = 4. We can choose,
without loss of generality, 4 = 0, giving §, = 0. Similarly one can show that gz = 0
on ¢ = . Thus boundary conditions (6.13) and (6.14) may be written as

g

ga=0 w=+1 on ¢ =0, (6.15)
gg=0 a—‘(7§=—l on ¢ = (6.16)
B a¢ . .

Should the interface configuration be time-dependent, then the condition (3.22) for
the neglect of this unsteadiness takes the form

IS

_1~
7 eXP (Ca™%).

This is satisfied for all # < 0, if (3.23) is satisfied, the effect of stresses resulting from
the unsteadiness then being exponentially small as Ca — 0. Thus the normal component,
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of velocity u,, at the interface in the intermediate region may be taken to be zero.
However, u,, (for either liquid) is
Uy, = Uy cOSd—u, sind, (6.17)

where § = 6— f = tan™! (CadfB/d%), is the angle between the radius vector and the
tangent to the interface. Substituting this value of § and the form of the velocity field
given by (6.10), into (6.17), we obtain

{1+<Cad’g>} { 1—0ad%}g~, (6.18)

d a+dﬂa
dE ~ 0% ' dz 0¢

is the total derivative with respect to # along the interface. By an argument similar
to that preceding (6.15), it is seen that the boundary condition u, = 0 reduces to

Ja=3Gp=0 ong=24, (6.19)

which is thus the kinematic boundary condition correct to all orders in Ca. In a similar
manner, the exact expression for the tangential component u, of velocity directed
away from the contact line at the interface, is found to be

w=fre(c)} e, w20

where use has been made of the result (6.19). Thus continuity of tangential velocity
at the interface implies that

where

s _ s

—_— = = . 1

26 —og no=F (6.21)
this being correct to all orders in Ca. The exact expression for the tangential stress
7, directed away from the contact line and acting on the interface due to the motion
of liquid A is

e @) e

ool %L ) ol 3,

where use is again made of the result (6.19). Thus the continuity of tangential stress
becomes

. 0% _
<gA+ a¢2> /\(gB+ wf) = 0(Ca®) on¢=4, (6.23)
for Ca—0. By making use of the expressions (6.8) and (6.12) for the pressure, the
normal component of stress that the liquid A exerts on the mterface (directed from
liquid A to liquid B) is found to be

- 0f, g ) < 0%, O%a , ,d8 62§A>
— 1 JA A A _ —r
TaA =T [( 26 a0 ) T O\ "azag azop T 2az agt

¥G  ¥§
+0a%<—4a£2gé‘¢-aiz—%*¢a)+...], (6.24)
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where use is again made of the result (6.19). The curvature « of the liquid-liquid
interface is 40 0
= —_— == —1 —_

K cosz?dr Car cos8dx, (6.25)

where 0 = f+ tan™! (Ca(df/dx)) and § = tan™* (Ca(df/dz)), so that the exact expres-

sion for « is
273 2
k=Ca r‘l 1+ dﬂ> dﬂ+0 d ﬂ+ C’a2<dﬂ> } (6.26)

The normal-stress boundary condition k = + Ca(r,,5—7,,) may therefore be expres-
sed as

d 2 5 35 3 2 a5 25
4 S _ {(69A+6 93> A<agn+a 9A>}+C {(69 L 2a 4980 gA)
az” a2 = Wog T og g " og® Fog " oxog® Az og?

g | gs _, 98 629‘3>} 2
"(axa¢+axa¢3 23z 3g? +0(Ca?), (6.27)

where the right-hand side is evaluated at ¢ = f. By operating on (6.27) with
(1—Ca(d/d%) and making use of (6.11) and (6.19), we obtain

d_/? _ [(agA +339A> A<agn +6393>][1_C <ang_ 1008 )] +0(Cay (6.28)

dE 0p = 0¢® 0p  O¢ O¢p® O¢?
which by the use of (6.19) and (6.23) further reduces to
daf _ {(agA 339A> <ags 63913)}
3z~ \og Tag) A 5g T34 ) T OCar, (6.29)

the right-hand side of which is evaluated at ¢ = f. It should be noted that a static
pressure drop (of order Ca™'AP in outer variables) would give rise to a term
AP = AP exp (Ca™'%) in (6.26). This may be neglected since it is exponentially
small as Ca—0 for any fixed value of & in the intermediate region. Also note that
in our present problem no terms of order Ca*! appear in the differential equation (6.11)
or in the boundary conditions (6.15), (6.16), (6.19), (6.21), (6.23) and (6.29), despite
the fact that a term of order Ca™! occurs in the expression for the pressure.

7. General solution

The expansions (6.7) and (6.6) for §,, §g and A valid for small Ca must be of the
form

Ga =gaot0a%fpt+ ..., §B=§Bo+0a2§32+“”} (7.1)

B =B+ Ca? By +

since, as noted above, the equations and boundary conditions for these variables
contain no term in Ca*!. Then §,, and §g, satisfy

(sg+1) B=0, (7.2)
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in either liquid, with

. oF
0 =0, g;°-+1, ong¢=0 (7.3)
j 0 agB"——l ong=mn (7.4)
Bo ’ a¢ ]
Gao=0Be=0 on¢= ﬂoy (7.5)
0Fao _ o _
26 = o¢ on ¢ = f, (7.6)
0 - 0%
(gA0+ agéxzo) A<gB0+—g¢'%) on ¢ = ﬂos (77)

It is observed that this set of equations and boundary conditions are identical with
those for flow assuming a planar liquid-liquid interface (see (3.11)—(3.16)). Hence as
in §3,
a0 = (Ca9+D,) cosg+(E,¢+F,) sing, |
Bo = (Cp ¢+ Dp) cos g+ (Eg ¢ + Fg) sin¢,J
where C,,D, ... are given by (3.18) and (3.19) with J, replacing 6,,. Then by

substituting the expansion (7.1) for £ into the normal stress boundary condition
(6.29), we obtain

(7.8)

Yo _ 160, (7.9)

where the function f(f) is given by (3.21). Thus
9B M)+ K = &, (7.10)

A k'R
where 9B, ) = TR (7.11)

and K is a constant of integration. Since the slope angle 6 of the interface is given
by (6.9) and hence by

ﬂ°+0(0 ?), (7.12)

=4

the interface shape (7.10) in the intermediate region may be written alternatively as
9(0,A) = — K+ &+ Ca+ O(Ca?). (7.13)

If the asymptotic form (3.26) of the solution in the outer region is written in terms
of intermediate variables it is seen that for matching we require that

@ . . -
8,A)~g6.,A)+Ca +E as &—>0. 7.14
90.2) ~ 90, )+ Cagg=t (7.14)
Thus for matching of terms at orders Ca® and Ca*! we require
Qo
—K+Ca=g(0,,A)+Ca—2— 7.15

with the terms of order £ in (7.13) and (7.14) automatically matching. If we write
=7+, (7.16)
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so that §—>0 in the intermediate region where we require matching onto the
inner-region expansion, then the intermediate-region solution is

g(0,A) = (—K—n)+§+ Ca+0(Ca?), (7.17)
whilst the asymptotic form (4.14) of the inner solution for #-> c0, may be written in
terms of § to obtain for matching that

Qf .
6,2 ~ g0, A)+Ca—2—+7 asij—>0. (7.18
9(0,4) ~ 90w, )+ Cage "3+ asy )
Thus for matching of terms at orders Ca® and Ca** we require
- Qf
K—9+Ca= g(0w,/\)+0af(0w,/\), (7.19)

with the terms of order # in (7.17) and (7.18) automatically matching. The elimination
of K from (7.15) and (7.19) yields

9(0m) = {9(6,)+ Ca In (e7)} + Ca{(f(6,)) 7 @ — (f(On)) 7 @53+ O(Ca?), (7.20)

for the value of the macroscopic contact angle 6, in terms of the spreading velocity
correct to order Ca*l. This relation (7.20) may be expressed in the alternative form

- 9(0m) —9(6,) 1)
O R~ U0 &+ FO Q.’,“+0<ln (6—1)) ! (7.21)

where use has been made of the assumption that Ca In (¢7!) is of order unity. This
equation is identical to that given by Hocking & Rivers (1982) when applied to the
particular problem that they considered. Should the liquid A be receding rather than
advancing so that U < 0, it may readily be seen that the above relations (7.20) and
(7.21) are still valid if Ca = p, U/0o is taken as negative. The constants QF and @}
are then still defined as in (3.26) and (4.14) respectively (but with Ca now being
negative).

The result (7.20) correct to order Ca® gives the zeroth-order value 6, of the
macroscopic contact angle as

g(Omo) = 9(0,) +Ca In (e71). (7.22)

The solution correct to order Ca*! for any particular problem may be obtained as
follows. For any given position of the contact line, the solution in the outer region
at order Ca® (i.e. the static configuration) would determine the value of 8, (i.e. the
macroscopic contact angle at order Ca®) at all positions along the contact line. The
above relation (7.22) applied at each position on the contact line would then give the
approximate spreading velocity U (correct to order (o/g,)(In (¢~1))~1). This may be
used to determine the solution in the outer expansion correct to order Ca*! which
when compared with the asymptotic form (3.28) at the contact line would determine
Om:- Equation (7.21) may then be used to determine a more accurate spreading
velocity U (correct to order (o/u,(In(¢71))~2). This value of U calculated at each
position along the contact line can then be used to determine the configuration of
the contact line at a slightly later time. In this manner, one can progress forward
in time by examining the development in each small time interval. Thus in order to
find the motion of the system correct to order Cat!, we solve simultaneously the
equation (7.21) (or (7.20)) correct to order Ca*! with an equation obtained from the
outer solution relating 6, to the contact-line position. To be consistent, this latter
equation must be used in a form correct to order Cat?.
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8. Discussion

As expected, it is observed that the result (7.20) obtained from the triple-region
expansion reduces to the result (5.3) obtained from the double-region expansion when
conditions are such that the latter is valid (i.e. Caln(e~!)—0 as Ca—>0, €—0).
However, the two results are distinct when Ca In (¢7!) is of order unity with (5.3) no
longer being valid.

The very simple result (7.22) is very attractive in that it relates the value 8, of
the macroscopic contact angle 6, correct to order Ca® directly to the spreading
velocity U through the definition (2.2a) of the capillary number with g(8) given by
(3.21) and (7.11). In order to use (7.22), it is not necessary to calculate the details
of the macroscopic flow in the outer region or necessary to know the precise type of
slip (or other mechanism) that occurs very close to the contact line. However (7.22)
has the disadvantage that the quantity € is not uniquely defined in that it is the
ratio of the slip length s to macroscopic lengthscale R where neither length is a unique
quantity. The addition of the term of order Ca*! as in (7.20), gets rid of this difficulty.
The value of the macroscopic contact angle 8, at order Ca® as given by (7.22) may,
in any experiment, be interpreted as the contact angle calculated from macroscopic
measurements of the liquid-liquid interface assuming a static interface shape. Thus
in any given experiment, such as the movement of a meniscus along a circular tube,
the angle 6, may be interpreted in any number of ways being calculated from, for
example, the apex height of the meniscus, the mean radius of curvature of the
meniscus or the additional pressure drop due to the meniscus (Hoffman 1975; Kafka
& Dussan V. 1979; Ngan & Dussan V. 1982). The values of 8, determined by these
various methods would differ from one another only by an amount of order Ca*!,
However the value of §,, at order Ca™! given by the more accurate result (7.21) must
be interpreted more carefully as either (i) the contact angle calculated from the static
interface shape with the contact line which actually exists in the outer region or (ii)
that determined by the asymptotic form (3.26) of the slope angle 4 in the outer region
as the contact line is approached. The microscopic contact angle 8, appearing in (7.21)
and (7.22) is the contact angle determined by intermolecular forces acting at the
contact line and is assumed to have a unique value, there being no contact-angle
hysteresis. For real solid surfaces, however, contact-angle hysteresis does occur and
is due, at least in part, to roughness and chemical heterogeneity of the surface
(Johnson & Dettre 1964 ; Cox 1983; Jansons 1985). For such surfaces it is not clear
whether 6, should be taken as that determined by Wenzel’s (1936) result for a rough
surface or as the static advancing contact angle (for U > 0) or possibly as some other
value. This question requires further investigation although it would seem reasonable
to take 6, as the static advancing contact angle since from (7.21), 6,6, as
U—-0.

Since one liquid is receding while the other is advancing, the relationships (7.21)
(and (7.22)) between contact angle and contact-line speed should be invariant upon
interchanging the roles of liquid A and liquid B. Such a transformation may be
written as

U->-U, A->ATY
Oy >n—0, Op—>n—0,, (8.1)
Ca— —ACa,
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and it may be verified by direct substitution that this does indeed leave (7.21) (and
(7.22)) unchanged if use is made of the results:

fin—6,A71) = A71f(6,A) [obtained from (3.21)],

gt—0,A71) = /\g(n /\)—/\g(ﬁ A) [obtained from (7.11)], (8.2)
g(m—6,A"1, ... @50, A, . [obtained from (3.26)],
Hr—6,A71, .. .) =A"1QF6,A,...) [obtained from (4.14)].

Since the macroscopic contact angle 0, depends on ¢ (as seen from (7.20) or (7.22)),
it means that by merely changing the macroscopic lengthscale R, keeping all other
quantities fixed, the value of &, should be altered. That this is so has been
demonstrated experimentally by Ngan & Dussan V. (1982) who examined the motion
of a meniscus between parallel plates and showed that 6, was indeed dependent on
the separation distance between the plates. In figure 2, graphs are drawn with g(6)
plotted along the abscissa and # along the ordinate for various values of the viscosity
ratio A. For any microscopic contact angle 6., the value of g(6,,) may be read off on
the abscissa. Then from (7.22) it is seen that by moving along the abscissa a distance
of (Ca In(e™1)) to the right if U > 0 (or to the left if U < 0) the value of 8, may be
read off on the ordinate. It is interesting to note that Hoffman (1975) from his
experimental results for a number of liquids with a meniscus advancing along a
capillary tube (with A = 0) in fact observed that, with such a graphical interpretation,
all his results fell on a single line (corresponding to our function g(8)). In figure 3,
lines corresponding to Hoffman’s results have been drawn (broken lines) assuming
various values of ¢. If these are compared with the function ¢(8)) for A=0
(continuous line), it is seen that good agreement is obtained for all values of  (except
for @ very close to 180°) for a value of ¢ = 1074, Since in Hoffman’s experiments the
macroscopic lengthscale (the capillary tube radius) was of the order of 0.1 cm. this
would mean a slip length s of 107 ecm. This is very close to the value obtained by
Hocking & Rivers (1982) for the very different system they examined, namely the
spreading of a molten glass drop on a planar platinum surface. The fact that good
agreement is obtained between Hoffman’s results and the calculated function g(@) for
all values of 8 suggests that the microscopic contact angle @, is, at least for the
systems examined, a constant independent of the spreading velocity. The disagree-
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Ficure 3. g(f) from Hoffman’s (1975) experimental results taking e =107%, 107 and 10~*
(broken lines) and the theoretical value of g(f) for A = 0 (continuous line).
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Fi1GurE 4. Macroscope contact angle 8, as a function of (Ca In (¢~!)) for various values of A with
6, = 40°. Broken line represents the limit of validity of the theory as determined from (8.115) with

€=1075,

ment between the experiment and the theory for values of 6 close to 180° may be
due to the fact that such values of 8, corresponded in the experiments to values of
the capillary number Ca which were no longer small compared with unity. The values
of 6, as derived from (7.22) are plotted as a function of (Ca In (¢~1)) for liquid A
advancing (U > 0) and for various values of A in figure 4 for the specific case 6, = 40°.
It is observed that for all values of A except A = 0 there is a maximum value of
(Ca In (¢71)) and hence a maximum spreading velocity U, for which a solution exists,
the value of 6, attaining a value of 180° at this limit. The only situation in which

7 FLM 168
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Ficure 5. Maximum (for U > 0) and minimum (for U < 0) values of (Ca In (¢~*)) for which a steady
solution exists plotted as a function of the microscopic contact angle 8, for various values of A.

a solution exists for all U, however large, is the case of the advancing contact line
with A = 0 (or the equivalent situation of a receding contact line with A = o0). At
lowest order, this maximum value Ca,,,, of the capillary number Ca (with U > 0)
is determined from (7.22) as

Ca. _ g(na/\)_g(ew:’\)

max ~ In(¢71)

+0(lne~?)"2, (8.3)

whilst in a similar manner the minimum value Ca,,;, (for U < 0) is found to be
__9(64,A)
Comin = ~Tn (1)

From the value of g(6, A) given by (7.11) and (3.21) it may be seen that Ca,,,, does
indeed tend to co as A—>0. In fact it may be shown after considerable calculation
that the asymptotic form of g(m, A) for A >0 is

+O0(lne1)~2, (8.4)

4
~ 1 =
g(r,A) ~ in In (31”\) +0(A), (8.5)
80 that for small A,
4
T In (31!—/\) —g(04)+0()

In(e~1)

Capax = +O0(Ine1)~2 (8.6)
In figure 5 the limiting values of (Ca In (¢~!)) for a solution to exist are shown as a
function of 6, for various values of A. If, in any particular situation, the spreading
velocity is forced to exceed its maximum value, it is speculated that no steady
interface shape is possible and that the liquid ahead of the contact line becomes
entrained as a film beneath the other liquid behind the contact line. In fact this
phenomenon has been observed by Inverarity (1969), Burley & Brady (1973), Burley
& Kennedy (1976) and Kennedy & Burley (1977).
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Should the results obtained be applied to a situation where the interface configu-
ration is time dependent then for validity we require that (3.23) be satisfied. Thus
the theory cannot be applied to (i) the initial stage of spreading of a drop placed on
a plane solid surface for which the initial value of the contact angle differs from 6,
or (i) where, during spreading, the value of 6, suddenly changes due to, for example,
a sudden change in the nature of the solid surface. In each of these situations the
characteristic time 7 is essentially zero.

In addition to the conditions for the validity of the theory already stated (namely
that Ca—0 and e—>0 with Ca (In(¢~!)) of order unity), an inspection of the values
in the intermediate region of 7, and « given by (6.22) and (6.26) respectively reveals
a further necessary condition that Ca(df/d%) < 1. Thus, from (7.9) it is seen that
we require

Caf(B) <1 for all § between 6, and 6,,,. (8.7)

This is satisfied automatically except for 8, and /or 6, lying close to either 0° or 180°
since for these values of £, f(f) is unbounded with

f(B)~382 asf~0, (8.8)

and fB) ~3A(n—p)"2 asf-n. (8.9
Thus for the theory to be valid, 8, and 6,, must be such that

6, > Cat, 6, > Cat, (8.10a, b)

(n—0,) > (CaAl}, (m—6,)> (Cal). (8.11a, b)

The limiting values of 8, given by (8.11b) are indicated in figure 4 for the particular
example considered with e = 10°. Note that this condition imposes no restriction
on the value of 6, for the case A = 0. It should also be mentioned that for A # 0,
since the theory does not apply when 8, gets too close to 180°, there is a problem
concerning the validity of the conclusion already stated that there exists a maximum
value of spreading velocity U for such situations. This is a question requiring further
study.

If, in the intermediate region, the calculated value of § is substituted into (6.20),
the tangential component u, of velocity away from the contact line on the liquid-liquid
interface is found to be

_ A(B?—sin® f) {sin S+ (n— B) cos B} +{(n —B)* —sin? B}(B cos f—sin f)
U= A(F? —sin B) {(n—f) +sin f cos B} +{(n— B)2—sin? A}(f —sin f cos f)

) 4 0(Ca?).
(8.12)

This is plotted as a function of 4 for various values of A in figure 6 from which it
is observed that except for A = 0 (or A = 00), %, changes from negatlve values (with

u, = —0.5 at § = 0) to positive values (with u, = +0.5 at f =) as f is increased.
In fact u, = 0 for § = f* where f* satisfies

A = Ln—B*)*—sin® B*} (sin B* — B* cos B*) 8.13
= s Y ein fr+ (=) cos 813)

Since # monotonically increases (for U > 0) or monotonically decreases (for U < 0)
as one moves out along the interface away from the contact line in the intermediate
region, it is seen that the following three situations are poss1ble (i) u, is positive along
the entire interface (if 8,,,6,, < f* for U > 0); (ii) «, is negative along the entire
interface (if 6,6, > B* for U > 0); (iii) », is negative close to the contact line but

7-2
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Ficure 6. Tangential component of velocity u, directed away from the contact line as a
function of f for various values of A.

positive farther from the contact line (if 8, < f* < 8, for U > 0) with u, changing
sign at § = f*. The type of interface flow present is of importance concerning the
transport and hence the effect of any surfactant which may be present.

In addition to being zero on the solid boundary and on the liquid-liquid interface,
the stream function i in the intermediate region is also zero where either §, or gy
is zero. This occurs where ¢ satisfies

— _CA(R) ¢+ D,(h)

AR NV FESAT &
_sin B[{A{n sin f+sin? £ cos f+ B(n— f) cos B} + cos f{(n — f)t —sin? B} ¢
"~ sin® f[— Afsin? S+ B(n— B} —{(n— f)* —sin? B}] 4

+BiAsin? f+ f(m— )+ n sin f cos B} +{(n— B2 —sin? B},
(8.14)

with 0 < ¢ < f (i.e. in liquid A) or where ¢ satisfies

tang — _Calf) 3+ Du(B)
Ex(P 6+ F(B)’

_ sin Al—2Acosf(fr—sin?f)+{+n sin #—sin? # cos f— f(n — f) cos f})(n— ¢)
sin? BIA(B2 —sin® B) +{sin? F+ B(n— D)} I(n— @)

— (= B)AB —sin® B)+ {sin* f+ f(m— f) — m sin § cos B},
(8.15)
with # < ¢ < = (i.e. in liquid B). These values of ¢ have been plotted as a function
of A for various values of A in figure 7, from which it is observed that for any given
value of £ (and A), these equations (8.14) and (8.15) taken together possess exactly
one solution for ¢. Thus if in these equations the interface shape f = (%) is
substituted, it is seen that the resulting value of ¢ considered as a function of &
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F1oURE 7. Values of ¢ as a function of § (for various values of A) for the streamline passing
through the contact line.

represents a streamline passing through the contact line. It is also noted from figure
7 that for any fixed value of A(A # 0 and A # 00) that when f = 0, ¢ = n and that
as fincreases from zero, ¢ is initially greater than £ (so that the streamline is in liquid
B) but that at a critical value of # (= f* where §* is given by (8.13)), ¢ = f so that
the streamline meets the liquid-liquid interface. For larger values of 4, the angle ¢
is less than £ (so that the streamline is in liquid A) with ¢ >2n as f/—n. From these
results sketches have been drawn (figure 8) of the form of the streamlines in the
intermediate region for each of the three cases (i), (ii) and (iii) mentioned above. It
is interesting to note that for the case (iii) there is a vortex ahead of an advancing
liquid-liquid interface. This vortex is different from the one reported by Dussan, V.
(1977, 1979) which was present in the outer region for the particular case of the motion
of a meniscus along a capillary tube.

From (6.8) and (6.11), it is seen that the pressure due to the flow in the intermediate
region in liquid A at the solid surface ¢ = 0 is 2r7'C, (and in liquid B at ¢ = 7 is
—2Ar~'Cy). This has been plotted as a function of f for various values of A in figure
9 from which it is observed that for A greater than a critical value (0.148) the pressure
is negative on the solid surface behind an advancing contact line but if A is less than
this value, positive or negative values of the pressure can occur behind the advancing
contact line depending on the value of 4. At a distance r from the contact line, the
dimensional pressure is of order x, Ur~! which for values of spreading velocity U for
which Ca In (e7!) = O(1) gives a value of order o7 (In (¢~!))~* which can be of order
one atmosphere or more for r in the range 107® to 107% em. This indicates that in the
regions where p is negative that at these distances from the contact line, cavitation
might possibly take place. In this connection, the minimum value of the pressure p
due to the flow (for p < 0) occurring for any ¢ in either liquid is plotted in figure 10
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F1eURE 9. Value of rp, on the solid surface (at ¢ = 0) as a function of A for various values of A.

as a function of f for various values of A. It is noted that for U > 0, there is always
a minimum value of p in the liquid A (i.e. behind the advancing contact line) at a
value of ¢ which is plotted in figure 11. Also for A greater than 6.73 ((0.148)™") and
U > 0, there is for some range of # a minimum value of p in liquid B, this occurring
at the solid surface ¢ = .

From the values of the pressure on the solid surface given above and of the shear
stress (27 1E, in liquid A, as 2Ar 'Ey in liquid B, radially outwards) on the solid
surface, the hydrodynamic force on the solid surface up to a distance R from the

contact line is R R
2ij (EA—AEB)r‘ldr—2jj (Cp—ACg)rtdr, (8.16)
§

s
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F1GurE 10. Value of rp,,, a8 a function of A for various values of A (with U > 0) where pp,, is the
minimum dimensionless pressure. Only negative values have been plotted. The continuous lines
represent the minimum values in liquid A, these occurring at the value of ¢ shown in figure 11.
The broken lines represent the minimum values in liquid B, these occurring always at the solid
surface ¢ = m.
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Ficure 11. Values of ¢ at which the minimum pressure occurs in liquid A plotted as a function
of A for various values of A (with U > 0).
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where i and j are unit vectors parallel to and normal to the solid surface (in directions
¢=0 and ¢ =in). This when combined with the interfacial tension force
Ca'(cosf, i+sinf, j) on the solid surface gives the total force on the solid surface
as

Ca‘l[{cosﬁw—.‘z :: %)E—A)dﬂ}i+{sin6w+2 :w %)— }]

(8.17)

By either considering the momentum balance of the fluid within » = R or by direct
substitution of the values of Cy, Cy, E,, Eg and f(f) it may be shown that this force
(8.17) is at order Ca™! the same as the surface-tension force Ca™(cos 0, i+sinf,, j)
exerted at » = B. However it should be noted that these forces are not identical at
order Ca® because of the contribution of the hydrodynamic force at this order on the
surface r = R.
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