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The dynamics of the spreading of liquids on a solid 
surface. Part 1. Viscous flow 
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An investigation is made into the dynamics involved in the movement of the contact 
line when one liquid displaces an immiscible second liquid where both are in contact 
with a smooth solid surface. In order to remove the stress singularity at  the contact 
line, it  has been postulated that slip between the liquid and the solid or some other 
mechanism must occur very close to the contact line. The general procedure for 
solution is described for a general model for such slip and also for a general geometry 
of the system. Using matched asymptotic expansions, it  is shown that for small 
capillary number and for small values of the length over which slip occurs, there are 
either 2 or 3 regions of expansion necessary depending on the limiting process being 
considered. For the very important situation where 3 regions occur, solutions are 
obtained from which it is observed that in general there is a maximum value of the 
capillary number for which the solutions exist. The results obtained are compared 
with existing theories and experiments. 

1. Introduction 
Consider two immiscible liquids (liquid A and liquid B) or a liquid and a gas in 

contact with a solid surface (or solid surfaces) and suppose that liquid A displaces 
liquid B so that the contact line [where the liquid-liquid interface intersects the solid 
surface] is constrained to move across the solid surface with a velocity U. Then the 
observed contact angle (that the liquid-liquid interface makes with the solid surface), 
which we will measure through liquid A, is known to increase as U increases [Dussan 
V. 19791. We will consider here the dynamics of this contact-line movement and will, 
for simplicity, assume that the solid surface (or surfaces) involved are perfectly 
smooth and chemically homogeneous. However it must be admitted that while 
roughness and chemical heterogeneity of the solid are suspected to be at least partly 
responsible for the jump in value of the contact angle (i.e.contact-angle hysteresis) 
occurring in the static limit of U = 0 (Johnson & Dettre 1964; Huh & Mason 1 9 7 7 ~ ;  
Cox 1983), it is not known what effect these might have for a non-zero spreading 
velocity U .  We will consider a completely general geometry for the system under 
discussion since we are primarily interested here in what happens very close to the 
contact line and we expect that this, to some extent, will not depend on the overall 
geometry. Thus we might have for example (a) the spreading of a drop on a horizontal 
surface (Greenspan 1978; Hocking & Rivers 1982), (b) the movement of a drop down 
an inclined surface, (c) the movement of a meniscus along a tube of circular or 
non-circular cross-section, ( d )  the movement of some object (e.g. plate, cylinder, 
sphere) through a liquid-liquid interface or (e) the squeezing of a drop between two 
parallel plates. 
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When the flow field is calculated in the neighbourhood of a moving contact line 
it is found that there is a non-integrable singularity in the stress a t  the contact line 
resulting in a divergent integral for the drag force on the solid boundary. I n  order 
to avoid this problem slip has been postulated to occur between the liquids and the 
solid surface close to the contact line (Hocking 1977; Huh & Mason 19773). The 
following models for this slip have been used : 

(i) Zero tangential stress a t  the solid surface a t  distances from the contact line less 
than s and no slip for distances greater than s (Huh & Mason 19773). This slip 
length may possibly be different in the two  liquids being s in liquid A and as in 
liquid B (where u is assumed to be of order unity). 
(ii) Difference in tangential velocity between liquid and solid equal to  s times the 
shear velocity gradient at the solid surface (Hocking 1977; Huh & Mason 19773; 
Lowndes 1980). 

(iii) Difference in tangential velocity between liquid and solid equal to sp-times the 
shear velocity gradient at the solid surface to the power of p (where p > 0). 

I n  all these models s is a measure of the distance from the contact line over which 
slip occurs. It should be mentioned that slip between liquid and solid is a convenient 
assumption to get rid of the non-integrable stress singularity, but that  there are also 
other possibilities such as non-continuum effects, non-Newtonian fluid effects and the 
elasticity of the solid, which might also have the effect of removing the singularity. 

For a specific slip model and specific overall geometry, this problem has been 
examined for small capillary number and small ratio of slip length s to macroscopic 
lengthscale. This has been done using singular perturbation methods using two 
regions of expansion (Hocking 1977; Huh & Mason 19773) and using three regions 
of expansion (Hocking & Rivers 1982). After a discussion of the outer region ($3) in 
which the overall geometry is important and the inner region ($4) applicable close 
to the contact line (at distances of order s), a discussion is given ($5) of the conditions 
necessary for a two-region expansion or a three-region expansion t o  be valid. It is 
shown that whereas for the two-region expansion, the observed contact angle must 
be approximately the static value, this is not the case for the three-region expansion, 
and so we examine here in detail the more interesting situation of the three-region 
expansion. Thus, in addition to  the outer and inner regions mentioned above, we have 
an intermediate region lying between them as described by Hocking & Rivers (1982). 
Since in this intermediate region we are considering lengthscales small compared with 
the macroscopic dimension of the overall system but large compared with the slip 
length s, we can at lowest order, solve without consideration of the overall geometry 
or the slip model used. This is d m e  in $ 6. Then upon matching the intermediate region 
solution onto the inner and outer region expansions the general solution is obtained 
in $7 .  Since it is found that the major contribution to the effect on the contact angle 
comes from the intermediate region, we find that at lowest order in the capillary 
number the solution obtained is independent of the solution in the inner and outer 
regions. Furthermore, even at the next higher order in the capillary number, the 
solution is dependent only upon one constant obtained from the inner region solution 
(which is thus dependent on the slip model used) and one constant obtained from 
the outer region solution (which is thus dependent on the overall geometry of the 
system). Finally in $8, a general discussion of the results is given including conditions 
of validity and a comparison with existing theories and experiments. Details are also 
given concerning the flow field in the intermediate region. 

A more general model might be 
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2. General problem 
Let R be some characteristic macroscopic length and U some characteristic velocity 

for the flow occurring when liquid A (of viscosity p, and density p,) displaces liquid 
B (of viscosity pB and density p,). During this motion, slip between each liquid and 
the solid surface (or some other mechanism to get rid of the non-integrable stress 
singularity) must occur at distances of orders from the contact line. Since we expect 
s to be very small, possibly of molecular size, it is reasonable to assume that 

S 
s = - . g l .  

R 

In  addition it will be assumed that the tension cr of the interface between the two 
liquids is sufficiently large that interfacial tension effects dominate over viscous 
effects, or more precisely that the capillary numbers for the two liquids are small, 
i.e. 

( 2 . 2 ~ )  

(2.2b) 

where A = pB/pA is the viscosity ratio of the liquids. In making a double expansion 
in terms of the two parameters s and Ca [or s and ACa if A B 11, it will be shown later 
that either 2 or 3 regions of expansion are necessary depending on the manner in which 
one approaches the limit E + O ,  Ca-tO. 

The Reynolds numbers (PARUIpA) and (p, RUIp,) for the flow in the two liquids 
are assumed to be so small that inertia effects may be neglected. In addition it will 
be assumed that at all points on the contact line the solid surface is planar on a 
lengthscale much smaller than R. However the solid surface (or surfaces) present are 
permitted to be non-planar on a lengthscale of order R since this can be taken into 
account in the outer region. 

3. Outer region 
An outer region of expansion is defined using variables made dimensionless by the 

quantities R, U and p,, so that i t  is valid everywhere except close to the contact line. 
Thus if u, and p ,  are the dimensionless velocity and pressure in liquid A and uB 
and p ,  the dimensionless velocity and pressure in liquid B in this outer expansion, 
and if r is the dimensionless position vector, then in the absence of gravity effects 
[i.e. if the Bond number B = IPA-PBI gR2/u is very small], 

in liquid B. Should the Bond number B be of order unity so that gravity may no 
longer be neglected, then (3.1) and (3.2) are still valid so long as p ,  and p ,  are 
interpreted as the excess pressure over hydrostatic. For the slip model (i) referred 
to in $ 1 ,  both u, and uB in this outer expansion must satisfy the no-slip boundary 
condition on all solid walls, since slip only occurs at a distance of O(s) from the contact 
line and the flow at such positions will be found by defining an inner region of 
expansion valid there. However for the slip models (ii) and (iii) referred to in $ 1 ,  uA 



172 R. G. Cox 

and u, would satisfy the no-slip boundary condition only at order e0 as E + O .  On the 
interface between the two liquids, the following boundary conditions will apply: (i) 
The kinematic boundary condition relating the normal velocity a t  the interface in 
both liquids to the interface motion; (ii) the continuity of tangential velocity; (iii) 
the continuity of tangential stress, and (iv) the balance of the normal fluid stress on 
the interface by the interfacial tension times the mean curvature of the interface. 

For a unique solution additional boundary conditions are usually necessary. Such 
boundary conditions may, for example, involve the statement of a given volume of 
one of the liquids (as for a drop spreading on a solid surface), of a given pressure drop 
across the interface (as for a meniscus moving along a tube under a given pressure 
drop) or of a given flow rate (as for a meniscus moving along a tube a t  a given 
velocity). Since the normal-stress difference can be non-zero (and of order a/R)  even 
in the static situation, its dimensionless value is of the form 

(3.3) 

where AP is of the order unity and is the static pressure drop across the interface 
(in going from liquid A to liquid B) made dimensionless by a and R. Thus AP is a 
constant if the Bond number is small so that gravity effects are absent, but is of the 
form (a  - Bz) if the Bond number B is of order unity (a  is a constant and z the vertical 
coordinate). Thus the normal-stress boundary condition in outer variables is 

= [mean curvature of inter face], 

(normal stress difference due to  the flow) + Ca-lAP, 

Ca [normal-stress difference across interface] + AP 
(3.4) 

and this is the only place where the capillary number Ca appears in the equations 
and boundary conditions. Thus the liquid velocity uA (and u,) can be expanded in 

(3.5) 
the form 

whilst the liquid-liquid interface f(r) = 0 in these outer variables can be expanded 
as 

(3.6) 

where uAo, uAl, fo, fl etc. will in general be functions of E since (i) E may become 
involved through the required matching a t  the contact line (discussed in $ 5 )  and (ii) 
the slip boundary condition at the walls may involve e .  Thus these quantities may 
be expanded in terms of 8. By substituting the expansions (3.5) and (3.6) into (3.1) 
and (3.2) and the boundary conditions, it is seen that fo = 0 is just the static position 
of the interface determined by the normal-stress boundary condition at lowest order, 
namely, AP = [mean curvature of interface]. 

Thusf, is independent of E whilst i t  is seen that uA0 expanded in terms of 8 must be 
of the form 

where uAO0 is independent of E .  The precise order of the o(1) terms in (3.8) depends 
on the slip model used. At present fo = 0 is just any static interface configuration 
about which we are expanding. The determination of such a static configuration 
would require specification of the contact line position and also a subsidiary boundary 
condition of the type mentioned previously (e.g. given drop volume for a drop 
spreading on a solid surface). We assume that the contact-line position is known 
although in most problems it  would not be known a priori. 

The zeroth-order velocity fields u ~ ~ ~ , u ~ ~ ~  can then be found by solving (3.1) 
and (3.2) and all the boundary conditions (other than the normal-stress condition) 

UA = UAo + c a  UA1-k . . . , 

f = f o + C a f l + .  . . = 0, 

(3.7) 

(3.8) uAo(r, E )  = uAoo(r) + o ( l )  as s+O, 
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Liquid B 
Liquid A 

FIGURE 1. (a) Outer region: coordinates are ( r ,  q5) and interface slope is 0. (b )  Intermediate region: 
coordinates are (2, $) where j r  = Cu In r and interface q5 = B(Z) has slope 0 = 0(2). (c) Inner region: 
coordinates are (P, 4) where P = O r .  

with the interface given by the known static position fo = 0. Then from these values 
of uAo0, uBOO the normal-stress difference across the interface due to this flow can be 
calculated and hence, by the normal-stress condition at  order Ca+', the value of the 
interface shape correction f, found. In  order that for a given f,, the value of fl be 
unique, we assume that the surfaces fo = 0 and fo + Ca f, = 0 have the same contact 
line position and the same subsidiary boundary condition (e.g. given drop volume 
or given pressure difference across the interface). 

For systems with simple geometry, it  may sometimes be possible to obtain explicit 
values for f,, uAo0, uBOO and f, as was done by Hocking & Rivers (1982) for the case 
of a drop spreading on a plane surface. However for more complicated situations it 
is very difficult to calculate even the static interface shape given byf,. Thus here, 
since we are more interested in behaviour close to the contact line, we will calculate 
the asymptotic form of the interface shape (3.5) as the contact line is approached since 
it is this which is needed for the matching procedure close to the contact line. Thus 
if 0 is the point which we wish to consider on the line of intersection of fo = 0 with 
the solid surface (i.e. on the zeroth-order contact line position), we set up a cylindrical 
polar coordinate system (r,  q5, z) in outer variables with origin at  0 and moving with 
the contact line (see figure 1 a )  and z-axis lying tangent to the contact line with q5 = 0 
in the solid surface in the direction opposite to that of contact line motion (for U > 0). 
For the purpose of investigating the flow in the neighbourhood of 0, we can choose 
the characteristic speed U as the speed of the contact line at 0, so that in our local 
( r ,  q5, z )  variables, the wall moves in the direction q5 = 0 with unit velocity. 

Consider first the static positionf, = 0 of the interface determined by (3.6). In  the 
(r,$)-plane, if the angle a t  which this static interface meets the solid surface is Om 
for r+-0, then 

(3.9) 

where 8 is the angle the tangent plane to the interface makes with the solid surface 
at a general position (see figure 1 a). When r is sufficiently smal1,'this interface may 
be taken as the plane q5 = 8,. The asymptotic form of the velocity field as r+O can 
be obtained by defining stream functions and $rg for liquids A and B such that 
( u ~ , , ) ~  and (uAo0)$, the radial and transverse components of uAOO are 

e = 8, + O(r) ,  

(3.10) 
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with similar expressions for the components of uBo0. If these values are substituted 
into (3.1) and (3.2), we obtain, upon the elimination of the pressure 

V4$,=0  and v4$B=0.  (3.11) 

The no-slip boundary condition on the solid wall gives 

while the boundary conditions for uAOO and uBOO at the interface $ = 8, with zero 
normal velocity (to be justified later) reduce to: 

(3.14) 

(3.15) 

(3.16) 

The solution of (3.1 1 )  of the form required in order to satisfy the boundary conditions 
(3.12) and (3.13) is 

$A = r{ (C,  # + D A )  COS# + (EA 4 +FA) sin$}. 

~B = r{(C, 4 + DB) cos $ + ( E B  $ + FB) sin $}, (3.17) 

where CA, D A ,  EA, etc. are constants which can be determined using the boundary 
conditions (3.12) to (3.16) as 

C, = sin 8, [ - A{n sin 8, + sin2 0, cos 8, + em@ - 8,) cos em} 
+ cos 8,{ + sin2 8, - (x- 8,)2}]/A, 

DA = 0, 

E ,  = sin2 8, [ - h{sin2 8, + 8,(n - 8,)) + { + sin2 8, - (n - 8,)2}>3/A, 

FA = 8, [ + hisin' 8, + 8,(n - 8,) + n sin 8, cos 8,) + { - sin2 8, + (n - 19,)~},3/A, 

-DB/n = C, = sin8,[+A cos8,(8&-sin28,) 

+ { - n sin 8, + sin2 0, cos 8, + 8,(x - 0,) cos 8,)]/A, 

E B  = sin2 8, [ + A(8: - sin2 8,) + { + sin2 8, + 8,(n -8,)}]/A, 

FB = [ A ( - O L +  sin28,)(8,-n c o s 2 8 , ) + ( - n ( x - 8 , )  sin8, cos8, 

- 8, sin2 8, + n sin2 8, cos2 8, + n(x - 0,) 13, cos2 8, - (x - 8,) 8k}]/A, 

(3.18) 

+ {(n - 0,,)2 - sin2 0,) (8, -sin 8, cos 8,). (3.19) 
The normal stress on the interfaw Q = 8, directed in t,he positive +direction due 
to this flow is found to be 

(3.20) 

where 
A = h(0h - sin2 0,) {(n - 0,) + sin 8,,, cos 8,) 

6> -1 - d r  [(hCB-(',) cos8,+(AEB-EE,)  sin8,I = -r-:f(e,,h), 
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where the function f(8, A )  is obtained as 

(3.21) 
2 sin 8[A2(d2 - sin2 8) + 2A{8(7c - 8) + sin2 S} + {(K - 8)2 - sin2 8}] 

f ( e ' h )  h(B2-sin28){(7c--)+sine cose}+{(n-O)2-sin28} (8-sin8 c o s ~ ) .  

In addition to the term (3.20), the normal stress on the liquid-liquid interface may 
also be expected to contain terms which are non-singular as r+O arising from the 
flow in the corner induced by the overall flow in the outer region away from the 
contact line (and also to the fact that the interface is only planar in the limit r+O). 
It should be noted that in situations where the interface configuration changes in time 
with a characteristic timescale T ,  that since dB,/dt would be of order T1, the 
dimensional normal stress on the interface near the contact line due to this 
unsteadiness would be of orderpuT-' compared with the order p U / ( R r )  due to contact 
line movement considered here ( r  is dimensionless outer variable). Thus the effect of 
unsteadiness is negligible so long as 

(3.22) 
Rr 

T%--, U 

and this will be the case for all r (including r -+ 0) so long as 

(3.23) 
R 
U 

T is of order - or larger 

The curvature of the liquid-liquid interface can be taken into account by expanding, 
for small r ,  the boundary conditions on that interface. One would then obtain 
additional terms of order rfl in (3.14), r+a in (3.15) and ro in the (3.16) giving rise 
to a term of order ro (or possibly of order In r )  in the expression (3.20) for the normal 
stress. 

Since the static interface shape is given by (3.9), the interface configuration for 
r+O, correct to order Ca+' can be written as 

8 = {8 ,+0( r ) }+Ca8 ,+ .  . ., (3.24) 

where from the coefficient of Ca+' in the normal-stress boundary condition (3.4) we 

(3.25) 

From earlier remarks it is seen that the o(r-l) term in this equation is really of order 
ro (or possibly of order lnr). Thus integrating (3.25) and substituting the resulting 
value of 8 into (3.24) we obtain the asymptotic form of the liquid-liquid interface 

(3.26) for r+O as 8 = {Om+. . .}+CaCf(B,,A)lnr+Q:+. . .}+ . . ., 
where Q: depends on A, em, de,/dt, and on the entire geometry involved in the outer 
region. In the above calculation we have expanded the liquid-liquid interface shape 
about a static position for which, at the point on the contact line being considered, 
this static interface configuration intersects the solid surface at  an angle 8,. However 
in the procedure of matching onto a solution valid close to the contact line i t  will 
be found (see $ 5 )  that the value of this as yet unknown constant 8, is a function 
of Ca and may thus be expanded as 

Om = 8,,+Ca8,,+. . . . 

8 = {8,,+. . .}+CaCf(Bmo) lnr+Q,*+8,,+. . .}+ . . . . 

(3.27) 

(3.28) 
Then (3.26) takes the form 
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4. Inner region 
Close to the contact line, an inner region of expansion is defined using variables 

made dimensionless by the quantities 8, Uand p,.  We thus use polar coordinates (+, 4) 
[with origin at  0 moving with the contact line], as independent variables so that? 

+ - e - l r  as P+m. (4.1) 

The velocity fields uA and uB are used (these being identical to those used in the outer 
region) and are expanded for small Cu as 

where uAo, PBo etc. will in general depend on E .  The liquid-liquid interface shape [figure 
l c ]  can be written as 8 = 8(+) where 8 is defined as in the outer region as being the 
angle between the interface and the solid surface at a general position. Thus we 
expand for small Ca as 

(4.3) 

The normal-stress boundary condition at  the liquid-liquid interface which, in 
dimensional form isp U / e  (normal-stressdifference ininner variables) + (a/R)AP = a / s  
(mean curvature of interface in inner variables), can be written in terms of inner 
variables as 

Cu[normal stress difference] + EAP = [mean curvature of interface]. (4.4) 

in inner 

8 = do(~;E)+cadl(+;E)+.  . . . 

Thus a t  order CaO, the interface 8 = do(+) has a curvature of order 
variables so that the expansion for do in terms of E is 

do - 8, + O(EP)  as E + O .  (4.5) 

Hence the interface is approximately planar and makes an angle 8, with the solid 
surface. This angle 0, will be called the microecopic contact angle, its value being 
determined by the forces acting very near the contact line between the molecules of 
the two liquid phases and of the solid phase. It is, as already mentioned in the 
introduction, being assumed that no contact angle hysteresis occurs so that 8, is the 
unique static contact angle for the system. It is uncertain whether such an angle 8, 
would depend on the spreading velocity U .  However, it  is to be expected that for 
the situation not considered here where surfactants are present, 8, will depend on 
U since the flow will affect the subfractant concentration at the contact line and hence 
the value of 8,. Also some authors [Cherry & Holmes 1969; Blake & Haynes 19691 
have suggested that the flow might affect 0, even for pure systems. 

If the lowest-order flow fields dAo and aB0 are expanded for small E ,  it is seen that 
they must be of the form 

where iAoo and tiBoo have stream functions $A and GB respectively [since flow is planar 
at order E O ] .  Then 

V4$A = 0) v4$B = 0, (4.7) 

t B =# e-lr since origin used here is a t  the actual contact line whereas in $3 it  was taken a t  the 
intersection of fo = 0 with the solid surface. 
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while on the liquid-liquid interface $ = Ow, they satisfy boundary conditions similar 
to (3.14), (3.15) and (3.16) [with $A and $B replacing +A and +B respectively]. Should 
the interface configuration be time-dependent, then the condition (3.22) for the 
neglect of this unsteadiness takes the form 

R€ T%-- 
U 

which is automatically satisfied if (3.23) is satisfied. The boundary conditions on the 
solid wall [$ = 0 and $ = x ]  are zero normal velocity, i.e. 

and the given slip law, which for the model (i) mentioned in $1 (with the same slip 
length s in the two liquids) would give 

(4.10) 

(4.11) 

Since the flow fields iiAO and ijBo and hence also the interface shape correction bl(+) 
at order Ca+', depend on the particular model chosen for the slip law, we will not 
calculate these quantities. Instead we will derive only the asymptotic form of the 
solution for P +  00. since i t  is this which is required for the matching procedure. 

For large i?, the slip boundary condition applicable on the solid surface must 
approach the no-slip boundary condition (whatever the chosen slip model may be). 
Then, by solving in a manner similar to that discussed in $3 using such a no-slip 
boundary condition, we obtain the normal stress on the interface $ = 8, directed in 
the positive $-direction due to this flow as -i?-Y(8,, A )  so that the correction bl(P) 
to the interface shape satisfies 

a 4  - N i?-y8,, A )  as i?+ CO, ai. 
(4.12) 

giving 8, -f(e,,A) Ini?+Qt+. . . as i?-+oo, (4.13) 

where the integration constant Q: is determined by a knowledge of the entire flow 
field in the inner region. Terms which tend to 0 slower than i?-l as i?+ co cannot appear 
in (4.12) since they would give rise to terms which would tend to co faster than In i? 
in (4.13). Such terms cannot appear since they would match onto terms in the 
coefficient of Ca in (3.28) which would tend to 00 as E + O .  Even for the three-region 
expansion situation discussed in $5 it  is seen that such terms cannot appear since 
they would match onto terms in the intermediate region which would tend to 00 as 
B + O .  Indeed the inner solutions obtained by Huh & Mason (1977b), Hocking (1977) 
and Hocking & Rivers (1982) all have the asymptotic form (4.13). Therefore from 
(4.3) and (4.5) it  is seen that the asymptotic form of the interface shape for +-+a 

(4.14) 
is 8 = (Ow+. . .}+CaCf(e,,A) In++&:+. . .}+ . . ., 
where Q: depends on A, 8, and the particular slip law which is chosen. 
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5. Matching with two and three regions 
When the parameter E is kept fixed and small while Cu+O, the expansion (3.26) 

in Cu valid in the outer region can be matched directly onto the expansion (4.14) in 
CU valid in the inner region. This was done by Dussan V. (1  976), Huh & Mason (1977 b )  
and Hocking (1977) for particular cases. Thus writing (4.14) in outer variables, we 
obtain 

8 = (8,+. . .}+CuCf(O,,A) lnr+f(B,,A) ln(E-l)+Q;+. . . }+ .  . ., (5.1) 

which must be the form of the outer region expansion for r -+ 0. Comparing this with 
(3.28), we obtain 

so that by (3.27), the value of Om is 
om, = + Q,* = f ( e w ,  A )  In ( E - ' )  + Q:, (5.2) 

(5.3) 8, = 8, + Ca{f(8,, A )  In + QT(8,) - Q , * ( ~ w ) l  

where, since Om N- S, ,Q; may be evaluated at  8 = 8, (instead of 8 = ern). This 
relation (5.3) relates the unknown constant Om determining the outer region solution, 
to the spreading velocity U (involved in the definition of Cu) and to the microscopic 
contact angle 8,. This angle Om, which will be called the mucroecopic contact angle, 
is the angle between the static interface shape f o  = 0 as defined in $3 [see paragraphs 
following (3.8)] and the solid surface in the outer region. Or alternatively, Om may 
be considered as being determined by the asymptotic form (3.26) of the interface shape 
in the outer region as one approaches the contact line. 

The result (5.3) can only be expected to be valid in the general double limit of Cu+O 
and E + O  if the quantity (Cu In (e-l)) also tends to zero in this limiting process since 
otherwise the term Cuf(e,, A )  In (6-l) appearing in (5.1) would be of order unity (or 
larger). This would mean that this equation (5.1), which is the inner solution written 
in outer variables, should be written as 

8 =  {8,+f(B,,A)(Culn(~-1))+ . . . }+ CuCf(B,,A)lnr+QT+ . . . }+  ... (5.4) 

for matching onto the outer solution. However this would not be a correct pro- 
cedure since in the inner region the interface is approximately planar with 8 = 8, 
and cannot therefore be valid at distances from the contact line for which 
8 N 8,+ f(S,, A)(Cu In ( E - ~ ) )  as in (5.4). Thus for Cu+O and E + O  with (Cu In (e-l)) 
of order unity, there is no overlap of the inner and outer regions. Then a third region, 
called the intermediate region of expansion must exist between the inner and outer 
regions of expansion in order to connect them. It is for this reason that Hocking & 
Rivers (1982) needed three regions of expansion in considering this type of limit for 
the special case of a drop spreading on a planar solid surface. In the subsequent 
discussion we limit ourselves to this situation where Cu-tO and E-+O with (Cu In (e-l)) 
of order unity so that the three regions of expansion are necessary. In order to perform 
t.his expansion process we write 

and make expansions in Cu taking r] as a parameter of order unity in magnitude. Then, 

7 = Cu In (e-l), (5.5) 

since 
(5.6) 

it follows that E is exponentially small. Since only terms of order eo were in any case 
included in the expansions in the outer ($3) and inner ($4) regions the results, which 
were obtained correct to O(Cu+l), are still valid without change in this three-region 
expansion procedure. 
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6. Intermediate region 
In the intermediate region, where we are concerned with values of r which are much 

larger than E (so that we are outside the inner region) but much smaller than unity 
(so that we are inside the outer region), we use independent coordinates (f,$) where 

9 = Ca Ins@, (6.1) 
9 is defined by7 

where as in $4 the origin of the polar coordinates (P, 4) is a t  the actual contact line 

(6.2) 
and where 

- 7 < 3 < 0 .  

This region corresponds to that investigated by Pisman & Nir (1982). Since for r small 
and of order unity, r N aP giving 

it follows for any fixed value of 9 in the range (6.2), that r becomes exponentially 
small as Ca+O. Thus for these values of f one is inside the outer region. However 
the end point 9 = 0 corresponds to the outer region (with r of order unity) so that 
the intermediate region must be matched onto the outer region at 9 = 0. Similarly, 
since 

4 = exp (Ca- l ( f+  r ] ) } ,  

it is seen that P becomes exponentially large as Ca+O for 9 satisfying (6.2). Thus for 
such values of 9, one is outside the inner region. However the end-point 9 = -7 
corresponds to i? of order unity so that the intermediate region must be matched onto 
the inner region at  P = - 7, this being a negative value of 9 with magnitude of order 
unity. 

Since, for a fixed value o f f  in this region, the value of r and hence the value of 
the curvature of the contact line (of order unity in the outer region) is exponentially 
small for Ca+O, the flow field is, to within such an exponentially small term, 
two-dimensional so that it may be expressed in terms of a stream function @. The 
velocity field u will be considered as a function of 5,  4 and an expansion made in Ca 
with r ]  taken as a parameter of order unity so that in liquid A 

r = exp (Ca-lz), (6.3) 

(6.4) 

uA(2, 4 ; r ] ,  ca) = uAO(z? @ ; r ] )  + ca uA1(9', 4 ; 7)  + . * * 9 

4 = P ( f ;  '9, Ca) = P0(f; r ] )  + Ca&x; r ] )  + . . . . 

(6.5) 

(6.6) 

whilst in a similar manner the liquid-liquid interface shape may be expanded as 

The stream function @ and pressure field p corresponding to the flow field (6.5) are 
then of the form 

@A(9?+;7,ca) = r#A(z,#;r],ca) = r[#AO(f,4;r])+ca#Al(3:,4;r])+ . . . I ,  (6.7) 

 PA(^, 4; 7, '?a) = T-l k ~ ( z , $ ;  r ] ,  C U )  = r-'[kAo(Z, 4 ; r ] )  + c U  k A 1 ( 9 , 4  ; r ] )  + . . .]. (6.8) 

We will use throughout subscripts A and B to refer to quantities pertaining to liquids 
A and B respectively. Where no suffix is given, the quantity is taken to pertain to 
either liquid A or liquid B in the equation concerned. The angle B that the tangent 
to the liquid-liquid interface given by (6.6) makes with the solid surface [figure 1 b] 
is 

t This is different (although equivalent) to the independent variable used by Hocking & Rivers 
(1982). 
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From the form (6.7) of the stream function, the radial component u, and transverse 
component u9 of the velocity field have values in either liquid of the form 

(6.10) 

Since the stream function $ must satisfy the biharmonic equation, it is found, by 
direct substitution of the form (6.7) for 9, that Q(2, 4) must satisfy 

(6.11) 

If the expressions (6.8) and (6.10) are substituted into the creeping flow equations 
(3.1) (or (3.2)) in polar coordinates and the resulting relations put in terms of the 
intermediate region coordinates, we obtain 

A t  the solid-liquid surfaces # = 0 and $ = A,  the boundary condition on u,, at 
lowest order, is u, = 0, there being zero error for slip model (i) (see $1) and an error 
of order 6 P r - P  for slip model (iii) (with p = 1 for slip model (ii)) since from the form 
of the flow field, the velocity gradient is proportional to r-l for r % E .  However from 

e p r - p  = exp{--pCa-'(x'++rl)}, (6.1) and (5.6) 

which is exponentially small for Ca+O since x' > - 7  and p > 0. Thus neglecting 
such terms, the boundary conditions u9 = 0 and u, = 0 on the solid surface become 

QA+ca,=0 a9A -- " A - + I  o n 4 = 0  (6.13) 

(6.14) gB+CaY = 0 - = - 1  on 4 = x .  

The above normal-velocity condition a t  the solid surface for liquid A may be 
integrated to give 

where A is a constant. This corresponds, as expected, to 9 = A. We can choose, 
without loss of generality, A = 0, giving PA = 0. Similarly one can show that gB = 0 
on # = x .  Thus boundary conditions (6.13) and (6.14) may be written as 

ax a4 
39B a9B 
ax a# 

9 A  = A exp ( - CU-%) 

(6.15) @ A = O  - = + 1  a9A on$=O,  

gB=O - = - 1  a9B o n @ = n .  

34 

34 
(6.16) 

Should the interface configuration be time-dependent, then the condition (3.22) for 
the neglect of this unsteadiness takes the form 

R 
U 

T % - exp (Ca-'2). 

This is satisfied for all f < 0, if (3.23) is satisfied, the effect of stresses resulting from 
the unsteadiness then being exponentially small as Ca -+ 0. Thus the normal component 
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of velocity u, at the interface in the intermediate region may be taken to be zero. 
However, u, (for either liquid) is 

u, = u# cos S- u, sin 6, (6.17) 

where S = 6 - 8  = tan-' (Cadl/dZ), is the angle between the radius vector and the 
tangent to the interface. Substituting this value of 6 and the form of the velocity field 
given by (6.10), into (6.17), we obtain 

where 

(6.18) 

is the total derivative with respect to P along the interface. By an argument similar 
to that preceding (6.15), it  is seen that the boundary condition u, = 0 reduces to 

gA = g B  = o on + = 8, (6.19) 

which is thus the kinematic boundary condition correct to all orders in Ca. In  a similar 
manner, the exact expression for the tangential component u, of velocity directed 
away from the contact line at the interface, is found to be 

(6.20) 

where use has been made of the result (6.19). Thus continuity of tangential velocity 
at  the interface implies that 

(6.21) 

this being correct to all orders in Ca. The exact expression for the tangential stress 
7, directed away from the contact line and acting on the interface due to the motion 
of liquid A is 

where use is again made of the result (6.19). Thus the continuity of tangential stress 

(6.23) 

for Ca-tO. By making use of the expressions (6.8) and (6.12) for the pressure, the 
normal component of stress that the liquid A exerts on the interface (directed from 
liquid A to liquid B) is found to be 

+Ca2 -4--- a39"A YgA + . . .], (6.24) ( a m +  a x 2 a +  
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where use is again made of the result (6.19). The curvature K of the liquid-liquid 
interface is 

dl3 dB 
K = cos6- = Car-' cos6-, 

dr dx 
(6.25) 

where 0 = /?+ tan-' (Ca(d/?/dx)) and 6 = tan-' (Ca(d/?/dZ)), so that the exact expres- 
sion for K is 

(6.26) 

The normal-stress boundary condition K = + C a ( 7 n B - 7 7 n A )  may therefore be expres- 
sed as 

( azgB a4!7B 2 ~ -A 7+-- " +O(Ca2),  (6.27) 
a X a 4  aj:a+3 a p  

where the right-hand side is evaluated at 4 = /?. By operating on (6.27) with 
(l-Ca(d/dZ) and making use of (6.11) and (6.19), we obtain 

_ -  $ - [(!A+ a3gA) -A  [ 1 -Car$- A %)] + ~ ( C U ) ~  (6.28) a+ 
which by the use of (6.19) and (6.23) further reduces to 

(6.29) 

the right-hand side of which is evaluated at  9 = /?. It should be noted that a static 
pressure drop (of order Ca-'AP in outer variables) would give rise to a term 
r+'AP = A P  exp (Cu-'Z) in (6.26). This may be neglected since it is exponentially 
small as Ca+O for any fixed value of j: in the intermediate region. Also note that 
in our present problem no terms of order Ca+l appear in the differential equation (6.11) 
or in the boundary conditions (6.15), (6.16), (6.19), (6.21), (6.23) and (6.29), despite 
the fact that a term of order Ca+' occurs in the expression for the pressure. 

7. General solution 

form 
The expansions (6.7) and (6.6) for g A ,  fB and /? valid for small Ca must be of the 

(7.1) 1 g A  = g A 0  + C a 2 @ A z  + . . . , gB = @Bo + Ca2#Bz + . . . , 
/?= jo+caz/?z+ ..., 

since, as noted above, the equations and boundary conditions for these variables 
contain no term in Ca+l. Then gAo and gBO satisfy 

($+lYf0 = 0, 
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in either liquid, with 

(7-3) 
'#A0 - gAo=O, - - - 1 ,  on $ = 0, 
'4 

It is observed that this set of equations and boundary conditions are identical with 
those for flow assuming a planar liquid-liquid interface (see (3.11)-(3.16)). Hence as 
in $3, 

(7.8) 
= (cA$+DA) COS++(EA$+FA) sin$,\ 

gBo= ( c B ~ + D B ) c o s ~ + ( E B $ + F B )  sin$,) 

where C,,D,  . . . are given by (3.18) and (3.19) with Do replacing 8,. Then by 
substituting the expansion (7.1) for j into the normal stress boundary condition 
(6.29), we obtain 

(7.9) dP0 - df - . f ( P o ) ,  

where the functionftj) is given by (3.21). Thus 

g(%, 4 + K = 2,  (7.10) 

where (7 .11)  

and K is a constant of integration. Since the slope angle 8 of the interface is given 
by (6.9) and hence by 

e = jo+ca-+o(cd), d80 (7.12) 
d2 

the interface shape (7.10) in the intermediate region may be written alternatively as 

g ( e , A )  = - -K+P+c~+o(c~~) .  (7.13) 

If the asymptotic form (3.26) of the solution in the outer region is written in terms 
of intermediate variables i t  is seen that for matching we require that 

Thus for matching of terms at orders Cuo and Ca+' we require 

(7.14) 

(7.15) 

with the terms of order 2 in (7.13) and (7.14) automatically matching. If we write 

2 = - r / + g ,  (7.16) 
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so that g - + O  in the intermediate region where we require matching onto the 
inner-region expansion, then the intermediate-region solution is 

g(e,h)  = ( - ~ - q ) + g + c ~ + o ( w ) ,  (7.17) 

whilst the asymptotic form (4.14) of the inner solution for P-tm, may be written in 
terms of g to obtain for matching that 

Thus for matching of terms at orders Cuo and Cufl we require 

(7.18) 

(7.19) 

with the terms of order y" in (7.17) and (7.18) automatically matching. The elimination 
of K from (7.15) and (7.19) yields 

g(em) = {g(ew)+Caln(E-')}+Cu{(f(ew))-'Q:-((f(em))-'Q,*}+O(Cu2), (7.20) 

for the value of the macroscopic contact angle Om in terms of the spreading velocity 
correct to order C d l .  This relation (7.20) may be expressed in the alternative form 

where use has been made of the assumption that Cu In (8-l) is of order unity. This 
equation is identical to that given by Hocking & Rivers (1982) when applied to the 
particular problem that they considered. Should the liquid A be receding rather than 
advancing so that U < 0, it  may readily be seen that the above relations (7.20) and 
(7.21) are still valid if Cu = p A  U/u is taken as negative. The constants Q,* and Qf 
are then still defined as in (3.26) and (4.14) respectively (but with Cu now being 
negative). 

The result (7.20) correct to order Cuo gives the zeroth-order value Omo of the 
macroscopic contact angle as 

g(Om0) = g(ew) +CU In (P).  (7.22) 

The solution correct to order Cu+' for any particular problem may be obtained as 
follows. For any given position of the contact line, the solution in the outer region 
at order Cuo (i.e. the static configuration) would determine the value of Orno (i.e. the 
macroscopic contact angle at order Cuo) a t  all positions along the contact line. The 
above relation (7.22) applied at each position on the contact line would then give the 
approximate spreading velocity U (correct to order (u/pA)(ln (e- l ) ) - l ) .  This may be 
used to determine the solution in the outer expansion correct to order Cu+' which 
when compared with the asymptotic form (3.28) a t  the contact line would determine 
Oml. Equation (7.21) may then be used to determine a more accurate spreading 
velocity U (correct to order (u/pA(ln ( e ~ l ) ) ~ ~ ) .  This value of U calculated at each 
position along the contact line can then be used to determine the configuration of 
the contact line at a slightly later time. In  this manner, one can progress forward 
in time by examining the development in each small time interval. Thus in order to 
find the motion of the system correct to order Cu+', we solve simultaneously the 
equation (7.21) (or (7.20)) correct to order Cufl with an equation obtained from the 
outer solution relating dm to the contact-line position. To be consistent, this latter 
equation must be used in a form correct to order Cu+l. 
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8. Discussion 
As expected, it is observed that the result (7.20) obtained from the triple-region 

expansion reduces to the result (5.3) obtained from the double-region expansion when 
conditions are such that the latter is valid (i.e. Ca In (e-l)-+O as Ca+O, E + O ) .  
However, the two results are distinct when Ca In (cl) is of order unity with (5.3) no 
longer being valid. 

The very simple result (7.22) is very attractive in that it relates the value Om, of 
the macroscopic contact angle 8, correct to order Cao directly to the spreading 
velocity U through the definition ( 2 . 2 ~ )  of the capillary number with g ( 8 )  given by 
(3.21) and (7.11). In order to use (7.22), it  is not necessary to calculate the details 
of the macroscopic flow in the outer region or necessary to know the precise type of 
slip (or other mechanism) that occurs very close to the contact line. However (7.22) 
has the disadvantage that the quantity E is not uniquely defined in that it is the 
ratio of the slip length s to macroscopic lengthscale R where neither length is a unique 
quantity. The addition of the term of order Ca+' as in (7.20), gets rid of this difficulty. 
The value of the macroscopic contact angle 8, at order Cao as given by (7.22) may, 
in any experiment, be interpreted as the contact angle calculated from macroscopic 
measurements of the liquid-liquid interface assuming a static interface shape. Thus 
in any given experiment, such as the movement of a meniscus along a circular tube, 
the angle Om may be interpreted in any number of ways being calculated from, for 
example, the apex height of the meniscus, the mean radius of curvature of the 
meniscus or the additional pressure drop due to the meniscus (Hoffman 1975; Kafka 
& Dussan V. 1979; Ngan & Dussan V. 1982). The values of 8, determined by these 
various methods would differ from one another only by an amount of order Ca+'. 
However the value of 8, at order Ca+' given by the more accurate result (7.21) must 
be interpreted more carefully as either (i) the contact angle calculated from the static 
interface shape with the contact line which actually exists in the outer region or (ii) 
that determined by the asymptotic form (3.26) of the slope angle 8 in the outer region 
as the contact line is approached. The microscopic contact angle 8, appearing in (7.21) 
and (7.22) is the contact angle determined by intermolecular forces acting at the 
contact line and is assumed to have a unique value, there being no contact-angle 
hysteresis. For real solid surfaces, however, contact-angle hysteresis does occur and 
is due, at least in part, to  roughness and chemical heterogeneity of the surface 
(Johnson & Dettre 1964; Cox 1983; Jansons 1985). For such surfaces it is not clear 
whether 8, should be taken as that determined by Wenzel's (1936) result for a rough 
surface or as the static advancing contact angle (for U > 0) or possibly as some other 
value. This question requires further investigation although it would seem reasonable 
to take 8, as the static advancing contact angle since from (7.21), 8,+8, as 
u+o. 

Since one liquid is receding while the other is advancing, the relationships (7.21) 
(and (7.22)) between contact angle and contact-line speed should be invariant upon 
interchanging the roles of liquid A and liquid B. Such a transformation may be 
written as 

'1 u+ - u, A-+A-', 

8, -+ x - e,, 8, + x -Om, 

Ca+ - ACa, 
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FIGURE 2. g(0) for various values of A .  

and i t  may be verified by direct substitution that this does indeed leave (7.21) (and 
(7.22)) unchanged if use is made of the results: 

(8.2) 1 
f(x-e,A-y = A - ~ ( o , A )  

g(n-8,h-i)  = A g ( n , A ) - A g ( e , A )  

Q;(n-O,A-', . . .) = h-'Q:(O,A, . . . )  

Qf(n-O,A-l, . . .) = A-'Qf(O,h, . . . )  

[obtained from (3.21)], 

[obtained from (7.11)], 

[obtained from (3.26)], 

[obtained from (4.14)]. 

Since the macroscopic contact angle 8, depends on E (as seen from (7.20) or (7.22)), 
i t  means that by merely changing the macroscopic lengthscale R ,  keeping all other 
quantities fixed, the value of 8, should be altered. That this is so has been 
demonstrated experimentally by Ngan & Dussan V. (1982) who examined the motion 
of a meniscus between parallel plates and showed that 8, was indeed dependent on 
the separation distance between the plates. I n  figure 2, graphs are drawn with g(8) 
plotted along the abscissa and 8 along the ordinate for various values of the viscosity 
ratio A. For any microscopic contact angle Ow, the value of g(8,) may be read off on 
the abscissa. Then from (7.22) it  is seen that by moving along the abscissa a distance 
of (Ca In (e-l)) to the right if U > 0 (or to the left if U < 0) the value of Om may be 
read off on the ordinate. It is interesting to  note that Hoffman (1975) from his 
experimental results for a number of liquids with a meniscus advancing along a 
capillary tube (with h = 0) in fact observed that, with such a graphical interpretation, 
all his results fell on a single line (corresponding to  our function g(8)) .  In figure 3, 
lines corresponding to  Hoffman's results have been drawn (broken lines) assuming 
various values of E. If these are compared with the function g(8))  for h = 0 
(continuous line), it is seen that good agreement is obtained for all values of 8 (except 
for 8 very close to 180") for a value of E = Since in Hoffman's experiments the 
macroscopic lengthscale (the capillary tube radius) was of the order of 0.1 cm. this 
would mean a slip length s of lop5 cm. This is very close to  the value obtained by 
Hocking & Rivers (1982) for the very different system they examined, namely the 
spreading of a molten glass drop on a planar platinum surface. The fact that good 
agreement is obtained between Hoffman's results and the calculated function g ( 8 )  for 
all values of 6' suggests that  the microscopic contact angle 8, is, at least for the 
systems examined, a constant independent of the spreading velocity. The disagree- 
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FIGURE 3. g(0) from Hoffman's (1975) experimental results taking E = and 
(broken lines) and the theoretical value of g(0) for A = 0 (continuous line). 
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Ca In(€-1) 

FIGURE 4. Macroscope contact angle Om aa a function of (Ca In (e-l)) for various values of A with 
0, = 40". Broken line represents the limit of validity of the theory as determined from (8.1 1 b )  with 
= 10-5. 

ment between the experiment and the theory for values of 8 close t o  180" may be 
due to  the fact that  such values of 8, corresponded in the experiments to  values of 
the capillary number Cu which were no longer small compared with unity. The values 
of Om as derived from (7.22) are plotted as a function of (Ca In (€-I))  for liquid A 
advancing ( U  > 0) and for various values of A in figure 4 for the specific case 8, = 40". 
It is observed that for all values of A except A = 0 there is a maximum value of 
(Ca In (€-I ) )  and hence a maximum spreading velocity U ,  for which a solution exists, 
the value of Om attaining a value of 180" at this limit. The only situation in which 

7 FLY 168 
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- 2.0 - 1.0 0 +1.0 +2.0 
Min [Ca In(cl)]  Max [Cu In(e-l)] 

FIGURE 5. Maximum (for U > 0) and minimum (for U < 0) values of (Ca In (8-l)) for which a steady 
solution exists plotted as a function of the microscopic contact angle 6, for various values of A. 

a solution exists for all U ,  however large, is the case of the advancing contact line 
with A = 0 (or the equivalent situation of a receding contact line with A = m). At 
lowest order, this maximum value Cumax of the capillary number Cu (with U > 0) 
is determined from (7 2-22) aa 

whilst in a similar manner the minimum value Cumin (for U < 0) is found to be 

From the value of g(8, A )  given by (7.11) and (3.21) it  may be seen that Cum,, does 
indeed tend to m as h+O. In  fact it may be shown after considerable calculation 
that the asymptotic form of g(x, A) for A-+O is 

so that for small A, 

camax = In(€-') +O(lne-1)-2. (8.6) 

In figure 5 the limiting values of (Cu In (8-l)) for a solution to exist are shown as a 
function of 8, for various values of A. If, in any particular situation, the spreading 
velocity is forced to exceed its maximum value, it  is speculated that no steady 
interface shape is possible and that the liquid ahead of the contact line becomes 
entrained aa a film beneath the other liquid behind the contact line. In fact this 
phenomenon has been observed by Inverarity (1969), Burley t Brady (1973), Burley 
t Kennedy (1976) and Kennedy t Burley (1977). 
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Should the results obtained be applied to a situation where the interface configu- 
ration is time dependent then for validity we require that (3.23) be satisfied. Thus 
the theory cannot be applied to (i) the initial stage of spreading of a drop placed on 
a plane solid surface for which the initial value of the contact angle differs from 8, 
or (ii) where, during spreading, the value of 8, suddenly changes due to, for example, 
a sudden change in the nature of the solid surface. In each of these situations the 
characteristic time T is essentially zero. 

In addition to the conditions for the validity of the theory already stated (namely 
that Ca+O and E + O  with Ca (In (€-I ) )  of order unity), an inspection of the values 
in the intermediate region of 7, and K given by (6.22) and (6.26) respectively reveals 
a further necessary condition that Ca(dp/dZ) -4 1. Thus, from (7.9) it  is seen that 
we require 

Caftp) -4 1 for all B between 8, and em. (8.7) 

This is satisfied automatically except for Ow and/or 8, lying close to either 0" or 180" 
since for these values of 8, f(p) is unbounded with 

f(/3 - 3p-2 &S p+o ,  (8.8) 

and j ( p )  - 3h(x-/7)-2 as p+n. (8.9) 

Thus for the theory to be valid, 8, and Om must be such that 

8, % cai, 8, % cd, (8.10a, b)  

(x-e,) 9 (c~A):,  (x-e,) % (cahp. (8 . l la ,  b)  

The limiting values of 8, given by (8.11 b)  are indicated in figure 4 for the particular 
example considered with 8 = Note that this condition imposes no restriction 
on the value of 8, for the case h = 0. It should also be mentioned that for h i 0, 
since the theory does not apply when 8, gets too close to 180", there is a problem 
concerning the validity of the conclusion already stated that there exists a maximum 
value of spreading velocity U for such Situations. This is a question requiring further 
study. 

If, in the intermediate region, the calculated value of 9' is substituted into (6.20), 
the tangential component U, of velocity away from the contact line on the liquid-liquid 
interface is found to be 

+O(CU2). 
A(/P - sin2/7) {sin /7+ ( R  -p) cos /7} + {(x - p ) 2 -  sin2p}(p cos j -  sin 

- A@ - sin2p) {(n: -8) + sin/? cos p} + {(x - B I Z -  sinZb(8- sin) cosp) 
u -  

(8.12) 

This is plotted as a function of p for various values of A in figure 6 from which it  
is observed that except for h = 0 (or A = m), u, changes from negative values (wit.h 
U, = -0.5 at p = 0) to positive values (with ut = +0.5 at /7 = x) as p is increased. 
In fact U, = 0 for ? = p* where p satisfies 

(8.13) 

Since /r monotonically increases (for U > 0) or monotonically decreases (for U < 0) 
as one moves out along the interface away from the contact line in the intermediate 
region, it is seen that the following three situations are possible : (i) u, is positive along 
the entire interface (if Ow, 8, < p for U > 0); (ii) U, is negative along the entire 
interface (if Ow, 8, > for U > 0) ; (iii) u, is negative close to the contact line but 

7-2 
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FIGURE 6. Tangential component of velocity u, directed away from the contact line as a 
function of 8 for various values of A. 

positive farther from the contact line (if Ow < < Om for U > 0 )  with u, changing 
sign at B = p. The type of interface flow present is of importance concerning the 
transport and hence the effect of any surfactant which may be present. 

In  addition to being zero on the solid boundary and on the liquid-liquid interface, 
the stream function $ in the intermediate region is also zero where either or &, 
is zero. This occurs where 4 satisfies 

I 

I 
- - sin j [ - A  cos j($-sinZ j ) + { + x  sin j-sin2,l?cos j - & c - j ? >  c o s ~ } ] ( x - ~ )  

-(a- j)[A($-sinaj?)+{sin2 j+ j(a- 8)-a sinBcos/J)], 

sin2 j[A($ - sin2 j) + (sin2 j+ j ( a  -,!7)}1(a - $) 

(8.15) 
with i qb < a (i.e. in liquid B). These values of q5 have been plotted as a function 
of for various values of h in figure 7, from which i t  is observed that for any given 
value of j (and A ) ,  these equations (8.14) and (8.15) taken together possess exactly 
one solution for 4. Thus if in these equations the interface shape B = j?(j:) is 
substituted, it is seen that the resulting value of $ considered as a function of j: 
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FIQURE 7 .  Values of q5 as a function of /? (for various values of A )  for the streamline passing 
through the contact line. 

represents a streamline passing through the contact line. It is also noted from figure 
7 that  for any fixed value of h(A =# 0 and h 9 00)  that  when j = 0, q5 = and that 
as j increases from zero, q5 is initially greater than j (so that  the streamline is in liquid 
B) but that  at a critical value of (=  I* where so that 
the streamline meets the liquid-liquid interface. For larger values of 1, the angle q5 
is less than j (so that  the streamline is in liquid A) with #+in as j+x. From these 
results sketches have been drawn (figure 8) of the form of the streamlines in the 
intermediate region for each of the three cases (i), (ii) and (iii) mentioned above. It 
is interesting to  note that for the case (iii) there is a vortex ahead of an advancing 
liquid-liquid interface. This vortex is different from the one reported by Dussan, V. 
(1977,1979) which was present in the outer region for the particular case of the motion 
of a meniscus along a capillary tube. 

From (6.8) and (6.1 l),  it  is seen that the pressure due to the flow in the intermediate 
region in liquid A a t  the solid surface $ = 0 is %-'CA (and in liquid B at q5 = K is 
- 2Ar-'CB). This has been plotted as a function of j for various values of A in figure 
9 from which i t  is observed that for A greater than a critical value (0.148) the pressure 
is negative on the solid surface behind an advancing contact line but if h is less than 
this value, positive or negative values of the pressure can occur behind the advancing 
contact line depending on the value of j .  At a distance r from the contact line, the 
dimensional pressure is of order p A  Ur-l which for values of spreading velocity U for 
which Ca In ( € - I )  = O(1) gives a value of order vr-'(ln ( c ' ) ) - l  which can be of order 
one atmosphere or more for r in the range cm. This indicates that  in the 
regions where p is negative that a t  these distances from the contact line, cavitation 
might possibly take place. In  this connection, the minimum value of the pressure p 
due to  the flow (for p < 0) occurring for any q5 in either liquid is plotted in figure 10 

is given by (8.13)), q5 = 

to  
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(i) u/ (ii) Lr/ (iii) 

FIQURE 8. Sketches of streamlines for the situations where (i) ut > 0 along the entire interface, (ii) 
u, < 0 along the entire interface, and (iii) ut changes sign along the interface. The liquid-liquid 
interface is the line OJ. 

/? (degrees) 

0 
0 

rP A 

- 5  

FIQURE 9. Value of rp, on the solid surface (at q5 = 0) as a function of B for various values of A.  

as a function of for various values of A. It is noted that for U > 0, there is always 
a minimum value of p in the liquid A (i.e. behind the advancing contact line) at a 
value of q5 which is plotted in figure 11. Also for h greater than 6.73 ((0.148)-l) and 
U > 0, there is for some range of j a minimum value of p in liquid B, this occurring 
at the solid surface $ = R. 

From the values of the pressure on the solid surface given above and of the shear 
stress (2r-lEA in liquid A, as 2hr-'E, in liquid B, radially outwards) on the solid 
surface, the hydrodynamic force on the solid surface up to a distance R from the 

2iISR (EA-AEB)r-ldr-2j (CA-hCB)r-'dr, (8.16) 
contact line is 
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FIQURE 10. Value of rpmin as a function of B for various values of A (with U > 0) where pmln is the 
minimum dimensionless pressure. Only negative values have been plotted. The continuous lines 
represent the minimum values in liquid A, these occurring at the value of q5 shown in figure 11. 
The broken lines represent the minimum values in liquid B, these occurring always at the solid 
surface q5 = II. 
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FIQURE 11.  Values of q5 at which the minimum pressure occurs in liquid A plotted as a function 
of j for various values of A (with U > 0). 
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where i and j are unit vectors parallel to  and normal to  the solid surface (in directions 
4 = 0 and 4 = in). This when combined with the interfacial tension force 
CU-~(COS~,  i+ sin Ow j) on the solid surface gives the total force on the solid surface 
as 

By either considering the momentum balance of the fluid within r = R or by direct 
substitution of the values of C,, C,, E,, E, and f(P) i t  may be shown that this force 
(8.17) is a t  order Cu-' the same as the surface-tension force Cu-'(cos 8, i+ sin 0 ,  j) 
exerted at r = R. However it should be noted that these forces are not identical a t  
order Cu0 because of the contribution of the hydrodynamic force a t  this order on the 
surface r = R. 
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